1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
2 years ago
12

The current through an inductor of inductance L is given by I(t) = Imax sin(ωt).

Physics
1 answer:
sammy [17]2 years ago
6 0

Answer:

(a) emf_L=-LI_{max}\omega cos(\omega t)

(b) neither increasing or decreasing

(c) opposite to the flow of charge carriers

Explanation:

The current through an inductor of inductance L is given by:

I(t)=I_{max}sin(\omega t)   (1)

(a) The induced emf is given by the following formula

emf_L=-L\frac{dI}{dt}    (2)

You derivative the expression (1) in the expression (2):

emf_L=-L\frac{d}{dt}(I_{max}sin(\omega t))\\\\emf_L=-LI_{max}\omega cos(\omega t)

(b) At t=0 the current is zero

(c) At t = 0 the emf is:

emf_L=-\omega LI_{max}

w, L and Imax have positive values, then the emf is negative. Hence, the induced emf is opposite to the flow of the charge carriers.

(d) read the text carefully

You might be interested in
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
3 years ago
A 10-kg piece of aluminum sits at the bottom of a lake, right next to a 10-kg piece of lead, which is much denser than aluminum.
zalisa [80]

Answer:

Aluminium

Explanation:

When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.

The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.

Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.

As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.

7 0
3 years ago
. Friction is a rubbing force that ___________ a spinning yo-yo.
Advocard [28]
The yo-yo speeds up when you rub it
3 0
2 years ago
Read 2 more answers
Find the momentum of a particl with a mass of one gram moving with half the speed of light.
joja [24]

Answer:

129900

Explanation:

Given that

Mass of the particle, m = 1 g = 1*10^-3 kg

Speed of the particle, u = ½c

Speed of light, c = 3*10^8

To solve this, we will use the formula

p = ymu, where

y = √[1 - (u²/c²)]

Let's solve for y, first. We have

y = √[1 - (1.5*10^8²/3*10^8²)]

y = √(1 - ½²)

y = √(1 - ¼)

y = √0.75

y = 0.8660, using our newly gotten y, we use it to solve the final equation

p = ymu

p = 0.866 * 1*10^-3 * 1.5*10^8

p = 129900 kgm/s

thus, we have found that the momentum of the particle is 129900 kgm/s

6 0
3 years ago
A blue car pulls away from a red stop-light just after it has turned green with a constant acceleration of 0.2 m/s2. A green car
jolli1 [7]

Answer:

After 15 seconds, the green car will catch up with the blue car

Explanation:

Let the time for the green car to catch up with the blue car be T

When the green car catches up to the blue car, the distances covered by each car after time T will be equal. Also, their velocities at that instant will be equal

Distance covered by blue car after time T is given by: s = ut + 0.5 at²

Where u = 0, a = 0.2 m/s², t = T

S = 0.5 × 0.2 × T² = 0.1 T²

Velocity of blue car, v = u+ at

v = 0.2T

Distance covered by green car at T is given as: S = Velocity × time

Where v = 0.2T, t = T - 7.5 (since the blue car started 7.5 seconds earlier)

S = 0.2T (T - 7.5)

S = 0.2 T² - 1.5T

Equating the distance covered by the two cars

0.2T² - 1.5T = 0.1T²

0.1T² - 1.5T = 0

T(0.1T - 1.5) = 0

T = 0 or

T = 1.5/0.1 = 15 secs

Therefore, after 15 seconds, the green car will catch up with the blue car

8 0
2 years ago
Other questions:
  • Which statement best describes how a wave would move differently through a pot of boiling water than the steam created from it?
    6·2 answers
  • Sound waves are mechanical waves in which the particles in the medium vibrate in a direction parallel to the direction of energy
    9·1 answer
  • What is the potential energy of a 3 kg rock sitting at the top of a 21 meter high cliff?
    8·1 answer
  • Brody, The dog, is sitting at your feet like a good boy. You throw a dog toy away from you at a speed of 34 m/s (assume constant
    6·1 answer
  • 8,000 mg + 2 g = _____________ mg?
    14·2 answers
  • ¿Cuál es el valor de la sumatoria de todas las fuerzas que actúan sobre un cuerpo que está en equilibrio?
    12·1 answer
  • Which elements will have chemical properties similar to NE (neon)?
    15·1 answer
  • An object moves in uniform circular motion at 25 m/s and takes 1.0 second to go a quarter circle. What is the radius of the circ
    5·2 answers
  • Which of the following statements about infrared telescopes is NOT true?
    5·1 answer
  • Activity
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!