We know that tangential acceleration is related with radius and angular acceleration according the following equation:
at = r * aa
where at is tangential acceleration (in m/s2), r is radius (in m) aa is angular acceleration (in rad/s2)
So the radius is r = d/2 = 1.2/2 = 0.6 m
Then at = 0.6 * 5 = 3 m/s2
Tangential acceleration of a point on the flywheel rim is 3 m/s2
According to a source, fringes is the answer. These fringes are what causes dark regions in the double -slit experiment conducted that can be observed in the screen.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Low pressure has a bit less of a function than high pressure, high pressure is more useful in certain terms
Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N