Answer:
less
Explanation:
Sliding friction is always less than static friction. This is because in sliding friction, the bodies slide with each other and thus the effect of friction is not more. However, it does not happen in the case of static friction.
Heya!!
For calculate aceleration, lets applicate second law of Newton:

<u>Δ Being Δ</u>
F = Force = 183 N
m = Mass = 367 kg
a = Aceleration = ?
⇒ Let's replace according the formula and clear "a":

⇒ Resolving

Result:
The aceleration is <u>0,49 meters per second squared (m/s²)</u>
Good Luck!!
Answer:
27,000 m
450 m/s
Explanation:
Assuming the initial velocity is 0 m/s:
v₀ = 0 m/s
a = 15 m/s²
t = 60 s
A) Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (60 s) + ½ (15 m/s²) (60 s)²
Δy = 27,000 m
B) Find: v_avg
v_avg = Δy / t
v_avg = 27,000 m / 60 s
v_avg = 450 m/s
Answer:
This question is incomplete
Explanation:
This question is incomplete because the telescope's focal length was not provided. The formula to be used here is
Magnification = telescope's focal length/eyepiece's focal length
The eyepiece's focal length was provided in the question as 0.38 m.
NOTE: Magnification can be described as the power of an instrument (in this case telescope) to enlarge an object. It has no unit and thus the two focal lengths mentioned in the formula above must be in the same unit (preferably meters since one of them is in meters already).