Answer:
340
Explanation:
Because you are moving at 5 m/s^2 for 8 seconds, you need to do some arithmetic to get the distance covered in the beginning. TO do this, you do 5 + 5*2 + 5*3 + 5*4 + 5*5 + 5*6 + 5*7 + 5*8, and once you have passed eight seconds, you need 4 more seconds with constant velocity, or 4(5*8). Your final equation would be 5+10+15+20+25+30+35+40+40+40+40+40. Hope this helps!
Answer:
D.They are equal in magnitude and opposite in direction
Explanation:
- Newton's third law states that the action force is always associated with a reaction force.
- When a body 'A' exerts a force on body 'B', it is called the force of action.
- When the body 'B' in turn resist the force of 'A' is called the reaction force. It is the reactive force acted upon by the body 'B' on 'A'.
- This reaction force is equal in magnitude of the action force.
- If the two bodies remain in the same horizontal line, the 'A' exerts a force in the direction towards 'B' and the body 'B' exerts a reaction force in the direction towards 'A'.
- Hence, the two forces that are exerted by the bodies are equal in magnitude and opposite in direction.
Heat is added to the mass as follows:
Q_-14-0 = mC_iΔT = 39*2.06*(0--14) = 39*2.06*14 = 1124.76 J
Q_0 = mC_f = 39*334 = 13026 J
Q_0-100 = mC_wΔT = 39*4.18*100 = 16302 J
Q_100 = mC_v = 39*2230 = 86970 J
Q_100-108 = mC_sΔT = 39*2.03*(108-100) = 39*2.03*8 = 633.36J
Q = Summation of all the heats added = 1124.76+13026+16302+86970+633.36 = 118056.12 J ≈ 118.06 kJ
Answer:
see below
Explanation:
acceleration = Δv /Δt
for this situation 60 / 10 = 6 m/s^2
B) vf = vo + at
vf = 0 + 6(3) =<u> 18 m/s after 3 seconds </u>
<u />
C) vf = at
60 = 6 ( t) t = 10 seconds ( actually, this was given)
d = 1/2 a t^2
= 1/2 (6) (10)^2 = <u>300 m </u>
<u />