Answer:

Explanation:
Here we can use energy conservation
As per energy conservation conditions we know that work done by external source is converted into kinetic energy of the disc
Now we have

now we know that work done is product of force and displacement
so here we have


now for moment of inertia of the disc we will have



now from above equation we will have


Answer:
Explanation:
First, let's review the ideal gas law, PV = nRT. In this equation, 'P' is the pressure in atmospheres, 'V' is the volume in liters, 'n' is the number of particles in moles, 'T' is the temperature in Kelvin and 'R' is the ideal gas constant (0.0821 liter atmospheres per moles Kelvin).
Answer:
W = 18.88 J
Explanation:
Given that,
Constant force, F = 11.8 N (in +x direction)
Mass of an object, m = 4.7 kg
The object moves from the origin to the point (1.6i – 4.6j) m
We need to find the work is done by the given force during this displacement. The work done by an object is given by the formula as follows :

So, the work done by the given force is 18.88 J.
I think it’s 25 but I don’t know