The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load.
Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way.
When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence.
A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces.
The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
Hello.
BEVs and hydrogen fuel cell vehicles are a more promising transportation technology for the future because they reduce greenhouse gas emissions as well as CO2 making it more 'green.' The second question is your opinion, in mine no, they should not be required but they should at least be considering.
Have a nice day
Duracell batteries are an example of an electrochemical cell that is powered between the reaction of Magnesium and Zinc, occurring in basic conditions (alkaline battery). This type of reaction has a precise output of 1.5 volts, and looks like this:
Zn + 2MnO2 ➡️ ZnO + Mn2O3
It’s not rechargeable.
Golf Cart Batteries are an example of an electrochemical cell that is powered by the reaction between Lead and Sulfuric Acid (Lead-Acid battery). This type of reaction occurs on larger scales than an alkaline battery, and thus can generate a variety of powers depending on how many instruments are present within the battery. The reaction looks like this:
PbO2 + Pb + 2H2SO4 ➡️ 2PbSO4 + H2O
This is a rechargeable cell, but is rather prone to discharging by the environment and surroundings of the battery.
A single reflection, like shouting at the side of a mountain and hearing
your voice come back to you, is an 'echo'.
Multiple reflection, like clapping your hands once inside a large room,
is 'reverberation'.