Answer:
Coefficient of friction is the ratio of friction force to normal force.
μ = F/N
<u>Answer</u>
The acceleration is
to the nearest tenth
<u>Explanation</u>
Since the car was travelling at
before it starts to decelerate, the initial velocity is
.
The final velocity is
, because the car came to a stop.
The time taken is
.
Using the Newton's equation of linear motion,
, we find the acceleration by substituting the known values.
This implies that,

This gives us,


We divide both sides by 15 to get,

or

Answer:
K'=4K
Explanation:
The electric potential energy is given by :

Where
k is spring constant
x is compression or extension in the spring
If the displacement of a horizontal mass-spring system is doubled, x'= 2x
New elastic potential energy :

So, new elastic potential energy 4 times the initial elastic potential energy.
Answer: 24
Explanation:
Given the following equation:

Where
is the number of mushrooms in a pizza and
the number of pizzas.
If we know the restaurant will make 8 pizzas (
), then:

This is the needed number of mushrooms for 8 pizzas
Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.