1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
3 years ago
9

A moving sidewalk in an airport terminal moves at 1 m/s and is 35 m long. If a person steps on at one end of the sidewalk and wa

lks at 1.5 m/s relative to the moving sidewalk, how much time does it take the person to reach the other end of the sidewalk if a) the person walks in the same direction the sidewalk is moving b) the person walks in the opposite direction the sidewalk is moving?
Physics
1 answer:
Serhud [2]3 years ago
4 0

Answer:

a) (1.4 + 1.9) = 3.3m/sec.

(35/3.3) = 10.6 secs.

b) (1.9 - 1.4) = 0.5m/sec.

(35/0.5) = 70 secs.

Explanation:

You might be interested in
A steel guitar string with a diameter of 0.300 mm and a length of 70.0 cm is stretched by 0.500 mm while being tuned. How much f
Ganezh [65]

Answer:

10.1 N

Explanation:

Your answer is 10.1 N, I don't actually know how to do it but I hope it helps.

8 0
3 years ago
A 160.-kilogram space vehicle is traveling along a
mario62 [17]

If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration.  It can only happen when the sum of
all forces (the 'net' force) on the object is zero.

And it doesn't matter what the object's mass is.  That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.

4 0
3 years ago
Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 kg), each having (a) a speed o
Ad libitum [116K]

Answer:

Part A:

The proton has a smaller wavelength than the electron.  

\lambda_{proton} = 6.05x10^{-14}m < \lambda_{electron} = 1.10x10^{-10}m

Part B:

The proton has a smaller wavelength than the electron.

\lambda_{proton} = 1.29x10^{-13}m < \lambda_{electron} = 5.525x10^{-12}m

Explanation:

The wavelength of each particle can be determined by means of the De Broglie equation.

\lambda = \frac{h}{p} (1)

Where h is the Planck's constant and p is the momentum.

\lambda = \frac{h}{mv} (2)

Part A

Case for the electron:

\lambda = \frac{6.624x10^{-34} J.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}

But J = Kg.m^{2}/s^{2}

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}

\lambda = 1.10x10^{-10}m

Case for the proton:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(6.55x10^{6}m/s)}

\lambda = 6.05x10^{-14}m

Hence, the proton has a smaller wavelength than the electron.  

<em>Part B </em>

For part b, the wavelength of the electron and proton for that energy will be determined.

First, it is necessary to find the velocity associated to that kinetic energy:

KE = \frac{1}{2}mv^{2}

2KE = mv^{2}

v^{2} = \frac{2KE}{m}

v = \sqrt{\frac{2KE}{m}}  (3)

Case for the electron:

v = \sqrt{\frac{2(7.89x10^{-15}J)}{9.11x10^{-31}Kg}}

but 1J = kg \cdot m^{2}/s^{2}

v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{9.11x10^{-31}Kg}}

v = 1.316x10^{8}m/s

Then, equation 2 can be used:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(1.316x10^{8}m/s)}    

\lambda = 5.525x10^{-12}m

Case for the proton :

v = \sqrt{\frac{2(7.89x10^{-15}J)}{1.67x10^{-27}Kg}}

But 1J = kg \cdot m^{2}/s^{2}

v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{1.67x10^{-27}Kg}}

v = 3.07x10^{6}m/s

Then, equation 2 can be used:

\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(3.07x10^{6}m/s)}

\lambda = 1.29x10^{-13}m    

Hence, the proton has a smaller wavelength than the electron.

7 0
3 years ago
What are the differences and relationships between speed, velocity, and acceleration
melamori03 [73]

Velocity is the rate of change of position with respect to time, whereas acceleration is the rate of change of velocity. Both are vector quantities (and so also have a specified direction), but the units of velocity are meters per second while the units of acceleration are meters per second squared.

3 0
3 years ago
In the Rolling Plains ecoregion of Texas, some parts of rivers are in deep canyons and others have bottoms that are close to the
Serga [27]

Answer:

most likely C

Explanation:

4 0
4 years ago
Read 2 more answers
Other questions:
  • A pendulum of mass 5.0 kg hangs in equilibrium. A frustrated student walks up to it and kicks the bob with a horizontal force of
    9·1 answer
  • Where is relative time recorded
    7·1 answer
  • Which of the following is true about ALL energy conversions?
    13·2 answers
  • Mercury is the 80th position in the periodic table how many protons does it have
    7·2 answers
  • What is the speed vf of the package when it hits the ground?
    7·1 answer
  • An optical disk drive in a computer can spin a disk at up to 10,000 rpm. If a particular disk is spun at 7570 rpm while it is be
    15·2 answers
  • A diffusion couple of two metals, A and B, was fashioned as shown in Figure 5.1. After a 26 hour heat treatment at 1050°C (and s
    7·1 answer
  • Ocean water conducts electrical current because it contains _____.
    13·2 answers
  • What is the latent heat of vaporization for water
    5·1 answer
  • A student creates a model by placing raisins in bread dough and allowing the dough to rise for several hours. The student sketch
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!