C 82.4 N sorry man if i am wrong but don't even think about reporting my answer
Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string = 
linear density of the string = 
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
If you go to high you’ll run out of oxygen and possibly be blown off due to high winds.
Answer:
For areas marked X, Y, Z, X is attractive only, Y has a very small range, and Z is attractive and repulsive
Explanation:
Solution
Given that:
From the question stated, Anna drew a diagram to compare forces that are strong and weak.
Now,
We are to find which labels are grouped in areas marked as X, Y, Z respectively.
Thus,
For X, Y, Z it is marked as:
X: Always attractive or attractive only
Y: Very small range
Z: Repulsive and attractive
Answer:
Bulk modulus = 1.35 ×
Pa
Explanation:
given data
density = 1400 kg/m³
frequency = 370 Hz
wavelength = 8.40 m
solution
we get here bulk modulus of the liquid that is
we know Bulk Modulus =
...............
here
is density i.e 1400 kg/m³
and v is = frequency × wavelength
v = 370 × 8.40 = 3108 m/s
so here bulk modulus will be as
Bulk modulus = 3108² × 1400
Bulk modulus = 1.35 ×
Pa