Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
The measure of how much salt will dissolve into 100g of water is _solution_ .
Answer:

Explanation:
Given that,
Pressure, P = 1 atm = 101325 Pa
Area of the square surface, A = 10² = 100 m²
We need to find the mass of vertical column of air. We know that, pressure is equal to the force acting per unit area. So,

So, the required mass of the vertical column of air is
.
Answer:
L= 12 light years
Explanation:
for length dilation we use the formula

now calculating Lo
Lo = 12.5×365×24×3600×3×10^8
= 1.183×10^17 m
now putting the values of v and Lo in the above equation we get

= 1.136×10^17 m
L=
m
so L= 12 light years