Answer:

Explanation:
In this case, we have a dilution problem. We have to remember that in the dilution procedure we go from a solution with higher concentration to a solution with lesser concentration. Therefore we have to start with the dilution equation:

Now we can identify the variables:




If we plug all the values into the equation:

And we solve for
:


I hope it helps!
Answer:
54
Explanation:
Given symbol of the element:
I⁻
Number of electrons found in an ion with the symbol:
This is a iodine ion:
For an atom of iodine:
Electrons = 53
Protons = 53
Neutrons = 74
An ion of iodine is one that has lost or gained electrons.
For this one, we have a negatively charged ion which implies that the number of electrons is 1 more than that of the protons.
So, number of electrons = 53 + 1 = 54
The number of electrons in this ion is 54
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer:
C
Explanation:
It afffects changes in pressure and temperature not melting and boiling points
It would be considered acid rain in the sense of dew fall