Answer:
992.302 K
Explanation:
V(rms) = 750 m/s
V(rms) = √(3RT / M)
V = velocity of the gas
R = ideal gas constant = 8.314 J/mol.K
T = temperature of the gas
M = molar mass of the gas
Molar mass of CO₂ = [12 + (16*2)] = 12+32 = 44g/mol
Molar mass = 0.044kg/mol
From
½ M*V² = 3 / 2 RT
MV² = 3RT
K = constant
V² = 3RT / M
V = √(3RT / M)
So, from V = √(3RT / M)
V² = 3RT / M
V² * M = 3RT
T = (V² * M) / 3R
T = (750² * 0.044) / 3 * 8.314
T = 24750000 / 24.942
T = 992.302K
The temperature of the gas is 992.302K
Note : molar mass of the gas was converted from g/mol to kg/mol so the value can change depending on whichever one you use.
<span>Molecular compounds, which are represented by molecules, are usually made of non-metals only (or of metalloids and non-metals). Ionic compounds, which are represented by formula units, are made of metals and non-metals.
More detail if you're interested: Molecules and formula units are the representative particles for molecular and ionic compounds, respectively. By that I mean, one unit of a molecular compound is a molecule...a bundle of atoms covalently bonded that exists separately from all the other molecules. One unit of an ionic compound is a formula unit. A formula unit is a representation of the compound's formula. For example, the formula unit of NaCl is one Na^+1 ion and one Cl^-1 ion. The formula unit of AlCl3 is one Al^+3 ion and three Cl^-1 ions. Ionic compounds don't have separate bundles of atoms like molecular compounds do, so the formula unit is just the smallest number of ions that it takes to represent the formula. </span>
Answer:
a. 1 x 10^8
Explanation:
100 MHz = 100,000,000 Hz = 10^8 Hz
Answer:
C boron, germanium, arsenic, silicon
It seems that you have missed the necessary options for us to answer this question so I had to look for it. Anyway, here is the answer. The pathway that produces the most NADH and the least ATP is the KREBS CYCLE. Hope this answers your question. Have a great day ahead!