The answer is option C.
That is it is a heterogeneous mixture.
Heterogeneous mixture have the following properties:
1. Different components could be observed in the substance.
2. Different samples of the substance appeared to have different proportions of the components.
3.The components could be easily separated using filters and sorting.
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bond" such as metallic, covalent or ionic bonds and "weak bonds" or "secondary bond" such as Dipole-dipole interaction, the London dispersion force and hydrogen bonding.</span>
Answer:
a. Ksp = 4s³
b. 5.53 × 10⁴ mol³/dm⁹
Explanation:
a. Obtain an expression for the solubility product of AB2(S),in terms of s.
AB₂ dissociates to give
AB₂ ⇄ A²⁺ + 2B⁻
Since 1 mole of AB₂ gives 1 mole of A and 2 moles of B, we have the mole ratio as
AB₂ ⇄ A²⁺ + 2B⁻
1 : 1 : 2
Since the solubility of AB₂ is s, then the solubility of A is s and that of B is 2s
So, we have
AB₂ ⇄ A²⁺ + 2B⁻
[s] [s] [2s]
So, the solubility product Ksp = [A²⁺][B⁻]²
= (s)(2s)²
= s(4s²)
= 4s³
b. Calculate the Ksp of AB₂, given that solubility is 2.4 × 10³ mol/dm³
Given that the solubility of AB is 2.4 × 10³ mol/dm³ and the solubility product Ksp = [A²⁺][B⁻]² = 4s³ where s = solubility of AB = 2.4 × 10³ mol/dm³
Substituting the value of s into the equation, we have
Ksp = 4s³
= 4(2.4 × 10³ mol/dm³)³
= 4(13.824 × 10³ mol³/dm⁹)
= 55.296 × 10³ mol³/dm⁹
= 5.5296 × 10⁴ mol³/dm⁹
≅ 5.53 × 10⁴ mol³/dm⁹
Ksp = 5.53 × 10⁴ mol³/dm⁹
Answer:
HDL absorbs cholesterol and carries it back to the liver. The liver then flushes it from the body. High levels of HDL cholesterol can lower your risk for heart disease and stroke.
Explanation: