1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
8

A 100 Ω resistor is connected in series with a 47 µF capacitor and a source whose maximum voltage is 5 V, operating at 100.0 Hz.

Find the following. • The capacitive reactance of the circuit • The impedance of the circuit • The maximum current in the circuit • The phase angle
Physics
1 answer:
Pani-rosa [81]3 years ago
5 0

Answer:

X_c=-33.86275385\Omega

|Z|=105.5778675\Omega

I=0.04735841062A

\phi=20.78612878\°

Explanation:

The electrical reactance is defined as:

X_c=-\frac{1}{2\pi fC}

Where:

f=Frequency\\C=Capacitance

So, replacing the data provided by the problem:

X_c=\frac{1}{2\pi *100*(47*10^{-6} )} =-33.86275385\Omega

Now, the impedance can be calculated as:

Z=R+jX_c

Where:

R=Resistance\\X_c= Capacitive\hspace{3}reactance

Replacing the data:

Z=100-j33.86275385

In order to find the magnitude of the impedance we can use the next equation:

|Z|=\sqrt{(R^2)+(X_c^2)}=\sqrt{(100)^2+(-33.86275385)^2} =105.5778675\Omega

We can use Ohm's law to find the current:

V=I*Z\\I=\frac{V}{Z}

Therefore the current is:

I=\frac{5}{100-j33.86275385}=0.04485638113+0.01518960593j

And its magnitude is:

|I|=\sqrt{(0.04485638113)^2+(0.01518960593)^2} =0.04735841062\Omega

Finally the phase angle of the current is given by:

\phi=arctan(\frac{0.01518960593}{0.04485638113})=20.78612878\°

You might be interested in
A top-fuel dragster starts from rest and has a constant acceleration of 42.0 m/s2. What are (a) the final velocity of the dragst
disa [49]

Answer:

a)  Final velocity of the dragster at the end of 1.8 s = 75.6 m/s

b) Final velocity of the dragster at the end of 3.6 s = 151.2 m/s

c) The displacement of the dragster at the end of 1.8 s = 68.04 m

d) The displacement of the dragster at the end of 3.6 s = 272.16 m

Explanation:

a) We have equation of motion v = u + at

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 1.8 s    

Substituting

  v = u + at

  v  = 0 + 42 x 1.8 = 75.6 m/s

Final velocity of the dragster at the end of 1.8 s = 75.6 m/s

b) We have equation of motion v = u + at

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 3.6 s    

Substituting

  v = u + at

  v  = 0 + 42 x 3.6 = 75.6 m/s

Final velocity of the dragster at the end of 3.6 s = 151.2 m/s

c) We have equation of motion s= ut + 0.5 at²

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 1.8 s    

Substituting

   s= ut + 0.5 at²

    s = 0 x 1.8 + 0.5 x 42 x 1.8²

    s = 68.04 m

The displacement of the dragster at the end of 1.8 s = 68.04 m

d) We have equation of motion s= ut + 0.5 at²

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 3.6 s    

Substituting

   s= ut + 0.5 at²

    s = 0 x 3.6 + 0.5 x 42 x 3.6²

    s = 272.16 m

The displacement of the dragster at the end of 3.6 s = 272.16 m

3 0
3 years ago
A 2.00-kg object A is connected with a massless string across a massless, frictionless pulley to a 3.00-kg object B. Object A re
slamgirl [31]

Answer:

  • tension: 19.3 N
  • acceleration: 3.36 m/s^2

Explanation:

<u>Given</u>

  mass A = 2.0 kg

  mass B = 3.0 kg

  θ = 40°

<u>Find</u>

  The tension in the string

  The acceleration of the masses

<u>Solution</u>

Mass A is being pulled down the inclined plane by a force due to gravity of ...

  F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N

Mass B is being pulled downward by gravity with a force of ...

  F = mg = (3 kg)(9.8 m/s^2) = 29.4 N

The tension in the string, T, is such that the net force on each mass results in the same acceleration:

  F/m = a = F/m

  (T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)

  T = (2(29.4) +3(12.5986))/5 = 19.3192 N

__

Then the acceleration of B is ...

  a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2

The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.

3 0
4 years ago
A person is singing in the shower. They notice that as certain notes become very loud, the shower walls vibrate. Which statement
AysviL [449]

Answer:

the note is one of the harmonic frequencies for the shower.

I just took the quiz, this is correct. Hope this helps:)

Explanation:

8 0
3 years ago
1 If you measured the distance travelled by a snail in
Fittoniya [83]
The answer is m/s hope it helps
3 0
2 years ago
When designing an automobile, engineers think about engine and drivetrain design, and how best to maintain a certain level of fu
LenKa [72]
It would be manufactured 

3 0
4 years ago
Other questions:
  • In the classic horse and cart problem, a horse is attached to a cart that can roll along on a set of wheels. Which of the follow
    15·1 answer
  • Help me to answer my questions please
    14·1 answer
  • Photons are also known as beta particles. (true or false)
    7·1 answer
  • Why there are not green stars?
    13·1 answer
  • If F(theta)=tan theta=3, find F(theta+pi)
    7·1 answer
  • 5. Suppose that you wish to construct a simple ac generator having an output of 24 V maximum when rotated at 120 Hz. A uniform m
    12·1 answer
  • Explain how Rutherfords' gold foil experiment explains how this experiment confirms the nuclear model of the atom and the idea t
    15·1 answer
  • Hailey is preparing a debate on the benefits of using synthetic polymers over natural polymers, and she wants to create a list t
    15·2 answers
  • Which forces are shown on a free body diagram?
    15·1 answer
  • A paper clip moves towards a magnet lying on a table. What forces are present in this situation? How do these forces compare?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!