Answer:
stars will emit more light due to their Luminosity, so they look very bright.
Explanation:
Luminous refers to..,
- The total amount of energy radiated by a star or other celestial object per second.
- Therefore it is the power output of a star.
Most of the really bright stars in our sky are not that very close to us yet they look bright because of the Luminosity of the star.
These stars are intrinsically so luminous.
A star's power output across all wavelengths is called its bolometric luminosity.
A star with large luminosity will have more measure of radiated electromagnetic power meaning.
so it will emit more light than a low luminosity star.
Hence,
those stars can easily be seen even across great distance.
learn more about Luminosity of the star here:
<u>brainly.com/question/13912549</u>
<u />
#SPJ4
What’s the question here?
In my estimation I would say C, I was leaning towards A, but I believe that would merely be "incomplete combustion." I hope this was semi-helpful!
Answer:
ok
Explanation:
The Earth is made of several subsystems or "spheres" that interact to form a complex and continuously changing whole called the Earth system. Scale
Processes operating in the Earth system take place on spatial scales varying from fractions of millimeters to thousands of kilometers, and on time scales that range from milliseconds to billions of years.
Examples of instantaneous - breathing; rotation of the Earth; earthquake
Examples of long term - making coal; plate tectonics
Cycles
The Earth system is characterized by numerous overlapping cycles in which matter is recycled over and over again. Cycles involve multiple spheres and systems interactions.
Examples of cycles: day and night; rock cycle; seasons
Energy
The Earth system is powered by energy from two major sources: the Sun and the planet's internal heat.
Humans and the Earth System
People are part of the Earth system and they impact and are impacted by its materials and processes.
Answer:
The speed of the 270g cart after the collision is 0.68m/s
Explanation:
Mass of air track cart (m1) = 320g
Initial velocity (u1) = 1.25m/s
Mass of stationary cart (m2) = 270g
Velocity after collision (V) = m1u1/(m1+m2) = 320×1.25/(320+270) = 400/590 = 0.68m/s