I think the situation is modeled by the scenario in the attached image. Some specific values seem to be missing (like the height of door
)...
The door forms a right triangles that satisfies

We also have

so if you happen to know the height of the door, you can solve for
and
.
is fixed, so

We can solve for the angular velocity
:

At the point when
and
ft/s, we get

Answer:
for students to do nothing
Explanation:
because doing nothing is not a course goal
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]