Answer:
Mass of the cart = 146 kg
Explanation:
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.
The cart accelerates at 1.4 m/s² horizontally.
Horizontal force = Fcosθ = 250 cos35° = 204.79N
We have F = ma
Substituting
204.79 = m x 1.4
m = 146.28 kg = 146 kg
Mass of the cart = 146 kg
<span>Δ</span>E = q + w
q = heat (quantity of)
q and w can be positive or negative depending on if work/heat is being absorbed/done on the system or released/done by the system
I believe it's Mercury, because the only other option would be Pluto and it's not even considered a planet anymore
Hope this helps
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
Answer:
Explanation:
24 - gauge wire , diameter = .51 mm .
Resistivity of copper ρ = 1.72 x 10⁻⁸ ohm-m
R = ρ l / s
1.72x 10⁻⁸ / [3.14 x( .51/2)² x 10⁻⁶ ]
= 8.42 x 10⁻² ohm
= .084 ohm
B ) Current required through this wire
= 12 / .084 A
= 142.85 A
C )
Let required length be l
resistance = .084 l
2 = 12 / .084 l
l = 12 / (2 x .084)
= 71.42 m