You’re correct hope this helps :)
Answer:
Explanation:
plate separation = 2.3 x 10⁻³ m
capacity C₁ = ε A / d
= ε A / 2.3 x 10⁻³
C₂ = ε A / 1.15 x 10⁻³
= 
a ) when charge remains constant
energy = 
q is charge and C is capacity
energy stored initially E₁= 
energy stored finally E₂ = 
= 
= 
= 
= 4.19 J
b )
In this case potential diff remains constant
energy of capacitor = 1/2 C V²
energy is proportional to capacity as V is constant .


= 16.76 .
Answer:
K_{f} / K₀ =1.12
Explanation:
This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.
Initial moment. With arms outstretched
L₀ = I₀ w₀
the wo value is 5.0 rad / s
final moment. After he shrugs his arms
= I_{f} w_{f}
indicate that the moment of inertia decreases by 11%
I_{f} = I₀ - 0.11 I₀ = 0.89 I₀
L_{f} = L₀
I_{f} w_{f} = I₀ w₀
w_{f} = I₀ /I_{f} w₀
let's calculate
w_{f} = I₀ / 0.89 I₀ 5.0
w_{f} = 5.62 rad / s
Having these values we can calculate the change in kinetic energy
/ K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)
K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²
K_{f} / K₀ =1.12