Answer:
a) 7.947 radians
b) 
Explanation:
y = Distance from central bright fringe = 2.5 mm
λ = Wavelength = 600 nm
L = Distance between screen and source = 2.8 m
d = Slit distance = 0.85 mm


a) Phase difference

∴ Phase difference between the two interfering waves on a screen at a point 2.50 mm from the central bright fringe is 7.947 radians
b) 
∴ Ratio of the intensity at this point to the intensity at the center of a bright fringe 
Answer:
As animals get older, their bodies begin to change as well as their instincts and priorities. They get bigger and might adapt or develop.
Answer:
W = 28226.88 N
Explanation:
Given,
Mass of the satellite, m = 5832 Kg
Height of the orbiting satellite from the surface, h = 4.13 x 10⁵ m
The time period of the orbit, T = 1.9 h
= 6840 s
The radius of the planet, R = 4.38 x 10⁶ m
The time period of the satellite is given by the formula
second
Squaring the terms and solving it for 'g'
g = 4 π²
m/s²
Substituting the values in the above equation
g = 4 π²
g = 4.84 m/s²
Therefore, the weight
w = m x g newton
= 5832 Kg x 4.84 m/s²
= 28226.88 N
Hence, the weight of the satellite at the surface, W = 28226.88 N
Answer:
a) X = 17.64 m
b) X = 17.64 + 4∆t^2 + 16.8∆t
c) Velocity = lim(∆t→0)〖∆X/∆t〗 = 16.8 m/s
Explanation:
a) The position at t = 2.10s is:
X = 4t^2
X = 4(2.10)^2
X = 17.64 m
b) The position at t = 2.10 + ∆t s will be:
X = 4(2.10 + ∆t)^2
X = 17.64 + 4∆t^2 + 16.8∆t m
c) ∆X is the difference between position at t = 2.10s and t = 2.10 + ∆t so,
∆X= 4∆t^2 + 16.8∆t
Divide by ∆t on both sides:
∆X/∆t = 4∆t + 16.8
Taking the limit as ∆t approaches to zero we get:
Velocity =lim(∆t→0)〖∆X/∆t〗 = 4(0) + 16.8
Velocity = 16.8 m/s