Answer:
All are correct
Explanation:
1) The angular momentum quantum number, l, are the subshells within a shell (principle quantum number) it talks about the "form" of an orbital, the number itself tells you about the number of angular nodes (a plane without electronic density). It starts at l=0 where you don't see any nodes and it takes the form of an sphere, and we knowing it bu another name an s-orbital. It takes values up to n-1.
l=0 (sphere - s-orbital)
l=1 (p-orbital)
l=2 (d-orbital)
2) The magnetic quatum number, ml relates to the number of orbitals within a subshell then it is related with l, taking values form -l to l incluing 0.
For l=0 (s-orbital) ml=0
For l=1 (p-orbital) ml=1,0,-1
For l=2 (d-orbital) ml=2,1,0,-1,-2
3) In every shell we are restricted by the total number of nodes of any orbital. Then if we want a d-orbital with l=3 we need at least 3 plane nodes only achievable with n=3 at least.
The most common pairing would be sodium forming an ion after transfering an electron to chlorine
Answer:
0.37 %
Explanation:
Given that:
Calculated density of aluminum = 2.69 g/cm³
Accepted density of aluminum = 2.70 g/cm³

Thus, applying values as:

<u>Percent error = 0.37 %</u>
<span>KCl<span>O3</span><span>(s)</span>+Δ→KCl<span>(s)</span>+<span>32</span><span>O2</span><span>(g)</span></span>
Approx. <span>3L</span> of dioxygen gas will be evolved.
Explanation:
We assume that the reaction as written proceeds quantitatively.
Moles of <span>KCl<span>O3</span><span>(s)</span></span> = <span><span>10.0⋅g</span><span>122.55⋅g⋅mo<span>l<span>−1</span></span></span></span> = <span>0.0816⋅mol</span>
And thus <span><span>32</span>×0.0816⋅mol</span> dioxygen are produced, i.e. <span>0.122⋅mol</span>.
At STP, an Ideal Gas occupies a volume of <span>22.4⋅L⋅mo<span>l<span>−1</span></span></span>.
And thus, volume of gas produced = <span>22.4⋅L⋅mo<span>l<span>−1</span></span>×0.0816⋅mol≅3L</span>
Note that this reaction would not work well without catalysis, typically <span>Mn<span>O2</span></span>.
Answer:
The correct option is A
Explanation:
Water from a river is used for many activities in a community. These activities could include (but not limited to) tourism, drinking for animals, local transport, irrigation for nearby farming, recreation (as in swimming), habitat for some living organisms among others. Rivers are not limited by what limits the influence of oceans such as taste (it's saltiness, which cannot be used in farming also) and wave current.