Answer : The normal boiling point of ethanol will be, or
Explanation :
The Clausius- Clapeyron equation is :
where,
= vapor pressure of ethanol at = 98.5 mmHg
= vapor pressure of ethanol at normal boiling point = 1 atm = 760 mmHg
= temperature of ethanol =
= normal boiling point of ethanol = ?
= heat of vaporization = 39.3 kJ/mole = 39300 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
Hence, the normal boiling point of ethanol will be, or
The correct answer is B) Chlorine, Sulfur, and Silicon
I'm 100% sure this is correct
Brainliest please!!!
The original results have not been replicated consistently and reliably.
Strong internolecurar forces (A) hope it helps
<h2>Answer </h2>
Option C - 320J
<u>Explanation </u>
Since ethanol solid at −120 °C and is only cooling down (it won’t change states)
. The amount of Thermodynamic properties values c is given in form of solid, liquid and gas. Amount of energy released is calculated below.
Formula,
= change in temperature x specific heat capacity for solid ethanol x 40
=> 0.5 x 16x 40 = 320J
Therefore, the 320J of heat is released when 40.0g of ethanol cools.