Answer:
(a) sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d) sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Explanation:
Alkanes or the carbons with all the single bonds are sp³ hybridized.
Alkenes or the carbons with double bond(s) are sp² hybridized.
Alkynes or the carbons with triple bond are sp hybridized.
Considering:
(a) H₃C-CH₃ , Both the carbons are bonded by single bond so both the carbons are sp³ hybridized.
Hence,
sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) H₃C-CH=CH₂ , The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp² hybridized because they are bonded by double bond.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) H₃C-C≡C-CH₂OH , The carbons of the methyl group and alcoholic group are sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp hybridized because they are bonded by triple bond.
Hence,
sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d)CH₃CH=O, The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The other carbon is sp² hybridized because it is bonded by double bond to oxygen.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Answer:
The 3rd answer down.
Na²O (sodium oxide) will be a base when exposed to water H²O
Explanation:
Sodium Oxide Na²O, will become Sodium Hydroxide after being exposed to water (at 80% I believe).
The oxygen ion in Na²O has 2 extra electrons which makes it highly charged and very attractive to hydrogen ions. The attraction is so strong that when Na²O comes in contact with H²O, the O(-2) strips off a hydrogen from water, forming 2 x OH ions which of course are still strongly basic.
Answer : The temperature of neon gas will be, 221.0 K
Explanation :
To calculate the temperature of neon gas we are using ideal gas equation.
where,
P = pressure of neon gas = 96.7 kPa = 0.955 atm
Conversion used : (1 atm = 101.3 kPa)
V = volume of neon gas = 9.50 L
T = temperature of neon gas = ?
R = gas constant = 0.0821 L.atm/mole.K
w = mass of neon gas = 10.00 g
M = molar mass of neon gas = 20 g/mole
Now put all the given values in the ideal gas equation, we get:
Therefore, the temperature of neon gas will be, 221.0 K
Answer:
The Ka is 9.11 *10^-8
Explanation:
<u>Step 1: </u>Data given
Moles of HX = 0.365
Volume of the solution = 835.0 mL = 0.835 L
pH of the solution = 3.70
<u>Step 2:</u> Calculate molarity of HX
Molarity HX = moles HX / volume solution
Molarity HX = 0.365 mol / 0.835 L
Molarity HX = 0.437 M
<u />
<u>Step 3:</u> ICE-chart
[H+] = [H3O+] = 10^-3.70 = 1.995 *10^-4
Initial concentration of HX = 0.437 M
Initial concentration of X- and H3O+ = 0M
Since the mole ratio is 1:1; there will react x M
The concentration at the equilibrium is:
[HX] = (0.437 - x)M
[X-] = x M
[H3O+] = 1.995*10^-4 M
Since 0+x = 1.995*10^-4 ⇒ x=1.995*10^-4
[HX] = 0.437 - 1.995*10^-4 ≈ 0.437 M
[X-] = x = 1.995*10^-4 M
<u>Step 4: </u>Calculate Ka
Ka = [X-]*[H3O+] / [HX]
Ka = ((1.995*10^-4)²)/ 0.437
Ka = 9.11 *10^-8
The Ka is 9.11 *10^-8
Flower !! !!! !! Yea yes yes