Answer:
Required answer = 2.7 x 10^16 MOLECULES
Explanation:
We know that
1 m = 100 cm
so 1 m^3 = (100 cm)^3 = 1000000 cm^3 = 1 x 10^6 cm3
as per question, 2.7*10^{10} molecules in 1 cm^3
so number of molecules in 1 m^3
Number of molecules = ( 2.7 x 10^10 molecules /1 cm^3 ) x ( 1 x 10^6 cm3 / 1 m3)
Number of molecules = 2.7 x 10^10 x 1 x 10^6 = 2.7 x 10^16 per m3
Required answer = 2.7 x 10^16 MOLECULES
Answer:
A)0.00022s b)40363.6N c) 0.025m/s
Explanation:
Mass = 24g = 0.024kg, distance though the target = thickness of the target = 25cm = 0.25m
Initial speed of the bullet = 1300m/s, final speed = 930m/s
Using equation of motion
Distance = 1/2(vf+vi)*t (time in seconds)
t = 0.25*2/(1300+930) = 0.00022s
B) force exerted on the body
F = ma = m* (vf-vi)/t = 0.024*(930-1300)/0.00022
F = -40363N, it is negative because the body decelerated during this motion
C) using law of conservation of momentum,
M1*U1+ M2*U2(M2and U1 are the mass and initial speed of the body) = M1V1+ M2V2
The target was at rest so initial speed U2 = 0
0.024*1300 + 360*0 = 0.024*930 + 360*V2
31.2 = 22.32+360*V2
31.2-22.33 = 360*V2
V2 = 8.88/360 = 0.025m/s
2.50 miles is equal to 4026 m.
<u>Explanation:</u>
As it is known that 1000 m =1 km and 1 km = 0.621 miles. So first we have to convert miles to km and then to metre as follows.
As 1 km = 0.621 miles, then

So, 2.50 miles will be equal to

Then, in order to get the answer in meters, we have to convert this km to meter by the conversion of 1000 m =1 km. So,

Thereby,

Answer:
D. The motion cannot be determined without knowing the speeds of the objects before the collision.
Explanation:
This question is tricky! We know the object moving to the left has a greater mass than the one moving to the right. We'd <em>assume</em> they would move to the left because the leftwards object has a greater mass, right?
Not. So. Fast.
We can solve for the objects' final velocity using the formula for momentum, m₁v₁ + m₂v₂ = (m₁ + m₂)v .
Now here's where the trap is sprung: <em>we don't think about the equation</em>. This shows that the final velocity of the objects and the direction depends on both the mass of the objects <em>and</em> their initial velocity.
Basically, what if the 3 kg object is moving at 1 m/s and the 4 kg object is moving at –0.5 m/s? The objects would move to the <em>right</em> after the collision!
Do we know the velocity of these objects? No, right?
That means we <em>can't</em> determine the direction of their motion <u>unless we know their initial, pre-collision velocity</u>. This question is tricky because we look at the 4 kg vs. 3 kg and automatically assume the 4 kg object would dictate the direction of motion. That's not true. It depends on velocity as well.
I hope this helps you! Have a great day!
Answer:
Correct answer: t = 2.86 seconds
Explanation:
We first use this formula
V² - V₀² = 2 a d
where V is the final velocity (speed), V₀ the initial velocity (speed),
a the acceleration and d the distance.
We will calculate the acceleration from this formula
a = (V² - V₀²) / (2 d) = (2.5² - 1²) / (2 · 5) = (6.25 - 1) / 10 = 5.25 / 10
a = 0.525 m/s²
then we use this formula
V = V₀ + a t => t = (V - V₀) / a = (2.5 - 1) / 0.525 = 1.5 / 0.525 = 2.86 seconds
t = 2.86 seconds
God is with you!!!