I would say that the answer would be MASS.
C.
The particles move perpendicular to the direction of the wave.
Answer: 20.2 m/s
Explanation:
From the question above, we have the following data;
M1 = 800kg
M2 = 1200kg
V1 = 13m/s
V2 = 25m/s
U (common velocity) =?
M1V1 + M2V2 = (M1 + M2). U
(800*13) + (1200*25) = (800+1200) * U
10400 + 30000 = 2000u
40400 = 2000u
U = 40400 / 2000
U = 20.2 m/s
Answer:
the tension in the string an instant before it broke = 34 N
Explanation:
Given that :
mass of the ball m = 300 g = 0.300 kg
length of the string r = 70 cm = 0.7 m
At highest point, law of conservation of energy can be expressed as :


The tension in the string is:

Thus, the tension in the string an instant before it broke = 34 N