1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
14

The fuel used in many disposable lighters is liquid butane, C4H10. Butane has a molecular weight of 58.1 grams in one mole. How

many carbon atoms are in 1.50 g of butane?
Chemistry
2 answers:
BARSIC [14]3 years ago
5 0
<h3>Answer:</h3>

              6.21 × 10²² Carbon Atoms

<h3>Solution:</h3>

Data Given:

                 Mass of Butane (C₄H₁₀)  =  1.50 g

                 M.Mass of Butane  =  58.1 g.mol⁻¹

Step 1: Calculate Moles of Butane as,

                 Moles  =  Mass ÷ M.Mass

Putting values,

                 Moles  =  1.50 g ÷ 58.1 g.mol⁻¹

                 Moles  =  0.0258 mol

Step 2: Calculate number of Butane Molecules;

As 1 mole of any substance contains 6.022 × 10²³ particles (Avogadro's Number) then the relation for Moles and Number of Butane Molecules can be written as,

            Moles  =  Number of C₄H₁₀ Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹

Solving for Number of Butane molecules,

             Number of C₄H₁₀ Molecules  =  Moles × 6.022 × 10²³ Molecules.mol⁻¹

Putting value of moles,

     Number of C₄H₁₀ Molecules  =  0.0258 mol × 6.022 × 10²³ Molecules.mol⁻¹

                 Number of C₄H₁₀ Molecules  =  1.55 × 10²² C₄H₁₀ Molecules

Step 3: Calculate Number of Carbon Atoms:

As,

                            1 Molecule of C₄H₁₀ contains  =  4 Atoms of Carbon

So,

          1.55 × 10²² C₄H₁₀ Molecules will contain  =  X Atoms of Carbon

Solving for X,

 X =  (1.55 × 10²² C₄H₁₀ Molecules × 4 Atoms of Carbon) ÷ 1 Molecule of C₄H₁₀

X  =  6.21 × 10²² Atoms of Carbon

Xelga [282]3 years ago
3 0

\boxed{6.216 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ atoms}}} of carbon is present in 1.50 g of butane.

Further Explanation:

Avogadro’s number indicates how many atoms or molecules a mole can have in it. In other words, it provides information about the number of units that are present in one mole of the substance. It is numerically equal to {\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{units}}. These units can be atoms or molecules.

The formula to calculate the moles of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} is as follows:

{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} = \dfrac{{{\text{Given mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}}{{{\text{Molar mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}}                                                       …… (1)

Substitute 1.50 g for the given mass and 58.1 g/mol for the molar mass of  {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} in equation (1).

\begin{aligned}{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} &= \left( {{\text{1}}{\text{.50 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{58}}{\text{.1 g}}}}} \right)\\&= {\text{0}}{\text{.0258 mol}}\\\end{aligned}

Since one mole of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} has {\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{molecules}} of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}. Therefore the formula to calculate the molecules of butane is as follows:

{\text{Molecules of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} = \left( {{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}} \right)\left( {{\text{Avogadro's Number}}} \right)                        …… (2)

Substitute 0.0258 mol for the moles of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} and {\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{molecules}} for Avogadro’s number in equation (2).

 \begin{aligned}{\text{Molecules of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\mathbf{}}&=\left( {0.0258{\text{ mol}}} \right)\left( {\frac{{{\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}{\text{ molecules}}}}{{{\text{1 mol}}}}} \right)\\&= 1.554 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ molecules}} \\\end{aligned}

The chemical formula of butane is {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}. This indicates one molecule of butane has four atoms of carbon. Therefore the number of carbon atoms can be calculated as follows:

 \begin{aligned}{\text{Atoms of carbon}} &= \left( {1.554 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ molecules}}} \right)\left( {\frac{{{\text{4 C atoms}}}}{{{\text{1 molecule of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}}} \right)\\&= 6.216 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ C atoms}} \\\end{aligned}

Learn more:

  1. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: brainly.com/question/3064603
  2. Calculate the moles of ions in the solution: brainly.com/question/5950133

Answer details:

Grade: Senior School

Chapter: Mole concept

Subject: Chemistry

Keywords: 1.50 g, 58.1 g/mol, butane, C4H10, Avogadro’s number, 6.216*10^22 C atoms, 1.554*10^22molecules, moles, one mole, chemical formula, carbon atoms, molar mass of C4H10, given mass of C4H10.

You might be interested in
For two variables in a direct proportion, what is the result of doubling one variable?
Airida [17]

Answer:

the other variable is also doubled

Explanation:

direct proportion, same thing has to happen to both variables

6 0
3 years ago
What measures are used to calculate the percent by volume of a solution?
Yuliya22 [10]
Titration is the method used.
4 0
3 years ago
K12 3.10 Unit Assessment: Solutions, Part 1 does anyone have the answers for this quiz
Pani-rosa [81]
Eat eat eat eat eat eat eat eat eat
5 0
2 years ago
Read 2 more answers
Which describes the burning of fossil fuels?
Artist 52 [7]

Hi there! Let's tackle this together.

The answer to the question is option A.

When fossil fuels mined from the ground are burned with fire and sometimes crude oil, it releases toxic fumes which cause global warming. The same toxic fumes that come from these fossil fuels come from plastic.

The answer is option A.

7 0
2 years ago
Read 2 more answers
You need a 35% alcohol solution. On hand, you have a 280 mL of a 30% alcohol mixture. You also have 75% alcohol mixture. How muc
Marina CMI [18]

Answer:

35 mL

Explanation:

Let the amount of 75% mixture needed be A.

The amount of each solution with their respective concentration to be added together can be expressed as:

0.75A + 0.3(280)...............eqn 1

The addition of the two solution must merge with the expected concentration and this can be expressed as:

0.35(A + 280).............eqn 2

Eqn 1 must be equal to eqn 2, hence:

0.75A + 0.3(280) = 0.35(A + 280)

Solve for A.

0.75A + 84 = 0.35A + 98

0.40A = 14

A = 35

Hence, 35 mL of the 75% mixture will be needed.

4 0
3 years ago
Other questions:
  • Which statement best describes chemical properties of matter? Chemical properties, such as density, must be observed when a subs
    5·2 answers
  • What is the net charge of the peptide arg-ala-phe-leu at ph 8?
    14·1 answer
  • Calculate the number of grams in magnesium present in 25 g of magnesium phosphate
    12·2 answers
  • What dose it mean to say that mass is conserved during a physical change?
    14·1 answer
  • 1.24 grams of magnesium phosphate tribasic dissolved in 1 L of lemon juice. What is the Ksp of the magnesium phosphate tribasic
    7·1 answer
  • Help me answer Number 8 please
    12·1 answer
  • This is an example of which type of short-term human-induced environmental change?
    5·1 answer
  • How many protons, neutrons, and electrons does 35/17 Cl ^ 1- have?
    11·1 answer
  • Which statement accurately describes the reactants of a reaction? new substances that are present at the end of a reaction subst
    13·2 answers
  • What is soil? where do the water and nutrients found in the soil come from?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!