1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
14

The fuel used in many disposable lighters is liquid butane, C4H10. Butane has a molecular weight of 58.1 grams in one mole. How

many carbon atoms are in 1.50 g of butane?
Chemistry
2 answers:
BARSIC [14]3 years ago
5 0
<h3>Answer:</h3>

              6.21 × 10²² Carbon Atoms

<h3>Solution:</h3>

Data Given:

                 Mass of Butane (C₄H₁₀)  =  1.50 g

                 M.Mass of Butane  =  58.1 g.mol⁻¹

Step 1: Calculate Moles of Butane as,

                 Moles  =  Mass ÷ M.Mass

Putting values,

                 Moles  =  1.50 g ÷ 58.1 g.mol⁻¹

                 Moles  =  0.0258 mol

Step 2: Calculate number of Butane Molecules;

As 1 mole of any substance contains 6.022 × 10²³ particles (Avogadro's Number) then the relation for Moles and Number of Butane Molecules can be written as,

            Moles  =  Number of C₄H₁₀ Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹

Solving for Number of Butane molecules,

             Number of C₄H₁₀ Molecules  =  Moles × 6.022 × 10²³ Molecules.mol⁻¹

Putting value of moles,

     Number of C₄H₁₀ Molecules  =  0.0258 mol × 6.022 × 10²³ Molecules.mol⁻¹

                 Number of C₄H₁₀ Molecules  =  1.55 × 10²² C₄H₁₀ Molecules

Step 3: Calculate Number of Carbon Atoms:

As,

                            1 Molecule of C₄H₁₀ contains  =  4 Atoms of Carbon

So,

          1.55 × 10²² C₄H₁₀ Molecules will contain  =  X Atoms of Carbon

Solving for X,

 X =  (1.55 × 10²² C₄H₁₀ Molecules × 4 Atoms of Carbon) ÷ 1 Molecule of C₄H₁₀

X  =  6.21 × 10²² Atoms of Carbon

Xelga [282]3 years ago
3 0

\boxed{6.216 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ atoms}}} of carbon is present in 1.50 g of butane.

Further Explanation:

Avogadro’s number indicates how many atoms or molecules a mole can have in it. In other words, it provides information about the number of units that are present in one mole of the substance. It is numerically equal to {\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{units}}. These units can be atoms or molecules.

The formula to calculate the moles of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} is as follows:

{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} = \dfrac{{{\text{Given mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}}{{{\text{Molar mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}}                                                       …… (1)

Substitute 1.50 g for the given mass and 58.1 g/mol for the molar mass of  {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} in equation (1).

\begin{aligned}{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} &= \left( {{\text{1}}{\text{.50 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{58}}{\text{.1 g}}}}} \right)\\&= {\text{0}}{\text{.0258 mol}}\\\end{aligned}

Since one mole of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} has {\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{molecules}} of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}. Therefore the formula to calculate the molecules of butane is as follows:

{\text{Molecules of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} = \left( {{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}} \right)\left( {{\text{Avogadro's Number}}} \right)                        …… (2)

Substitute 0.0258 mol for the moles of {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} and {\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{molecules}} for Avogadro’s number in equation (2).

 \begin{aligned}{\text{Molecules of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\mathbf{}}&=\left( {0.0258{\text{ mol}}} \right)\left( {\frac{{{\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}{\text{ molecules}}}}{{{\text{1 mol}}}}} \right)\\&= 1.554 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ molecules}} \\\end{aligned}

The chemical formula of butane is {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}. This indicates one molecule of butane has four atoms of carbon. Therefore the number of carbon atoms can be calculated as follows:

 \begin{aligned}{\text{Atoms of carbon}} &= \left( {1.554 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ molecules}}} \right)\left( {\frac{{{\text{4 C atoms}}}}{{{\text{1 molecule of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}}} \right)\\&= 6.216 \times {\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ C atoms}} \\\end{aligned}

Learn more:

  1. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: brainly.com/question/3064603
  2. Calculate the moles of ions in the solution: brainly.com/question/5950133

Answer details:

Grade: Senior School

Chapter: Mole concept

Subject: Chemistry

Keywords: 1.50 g, 58.1 g/mol, butane, C4H10, Avogadro’s number, 6.216*10^22 C atoms, 1.554*10^22molecules, moles, one mole, chemical formula, carbon atoms, molar mass of C4H10, given mass of C4H10.

You might be interested in
Which macromolecule is ring shaped
liraira [26]
Carbohydrates are ring shaped.
7 0
3 years ago
Read 2 more answers
Why is water said to be universal solvent?
Pachacha [2.7K]

Answer:

B

Explanation:

And, water is called the "universal solvent" because it dissolves more substances than any other liquid. This allows the water molecule to become attracted to many other different types of molecules.

8 0
2 years ago
Read 2 more answers
HELPPPPPPPP <br> how many atoms in sodium hydrate
musickatia [10]
There are 4 atoms in sodium hydrate
5 0
3 years ago
When an atom gains an electron,what charge does the ion have
irakobra [83]

Answer:

if an atom gains an electron, the ion has negetive charge

7 0
3 years ago
How would you prepare 100 ml of 0.4 M MgSO4 from a stock solution of 2 M MgSO4?
miss Akunina [59]
OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2 
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml

</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100 
</span>therefore:
V1 = 20 ml

Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.

7 0
3 years ago
Other questions:
  • Deuterium on a periodic table?
    8·1 answer
  • How many mole are in 72.9g of HCI
    9·1 answer
  • What happens to raisins or other dried fruits in breakfast cereals when you pour milk over them? why?
    14·1 answer
  • What is H2O In chemistry
    15·2 answers
  • The density of silver is 10.5 g/cm3. What is the mass (in kilograms) of a cube of silver that measures 0.94 m on each side?
    5·1 answer
  • One reason people around the world use coal as an energy source is
    7·2 answers
  • Explain the difference between biotic and abiotic
    7·1 answer
  • A substance made up of two or more types of atoms that are NOT chemically combined is called a(n)
    7·1 answer
  • Determine the number of molecules in 3.79 kilograms of the fictional compound Cs7(Cr5O3)4. Include the units, but do not write t
    9·1 answer
  • Which method of galaxy formation is expected to dominate far in the future? (1 point
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!