Explanation: Electron dot structures are the lewis dot structures which represent the number of valence electrons around an atom in a molecule.
The electronic configuration of potassium is ![[Ar]4s^1](https://tex.z-dn.net/?f=%5BAr%5D4s%5E1)
Valence electrons of potassium are 1.
The electronic configuration of Bromine is ![[Ar]4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E24p%5E5)
Valence electrons of bromine are 7.
These two elements form ionic compound.
Ionic compound is defined as the compound which is formed from the complete transfer of electrons from one element to another element.
Here, one electron is released by potassium which is accepted by bromine element. In this process, Potassium becomes cation having +1 charge and Bromine become anion having (-1) charge.
The ionic equation follows:

The electron dot structure is provided in the image below.
0.55[that is the correct answer to the question]<<<
Answer:
1520mmHg
Explanation:
Data obtained from the question include:
V1 (initial volume) = 600 mL
P1 (initial pressure) = 760 mmHg
V2 (final volume) = 300 mL
P2 (final pressure) =.?
Using the Boyle's law equation P1V1 = P2V2, the final pressure of the gas can easily be obtained as shown below:
P1V1 = P2V2
760 x 600 = P2 x 300
Divide both side by 300
P2 = (760 x 600) /300
P2 = 1520mmHg
The final pressure of the gas is 1520mmHg
Energy would be the correct answer