Answer:
71 Ga has a naturally abundance of 36%
Explanation:
Step 1: Given data
Gallium has 2 naturally occurring isotopes: this means the abundance of the 2 isotopes together is 100 %. The atomic weight of Ga is 69.72 amu. This is the average of all the isotopes.
Since the average mass of 69.72 is closer to the mass of 69 Ga, this means 69 Ga will be more present than 71 Ga
Percentage 69 Ga> Percentage 71 Ga
<u>Step 2:</u> Calculate the abundance %
⇒Percentage of 71 Ga = X %
⇒Percentage of 69 Ga = 100 % - X %
The mass balance equation will be:
100*69.72 = x * 71 + (100 - x)*69
6972 = 71x + 6900 -69x
72 = 2x
x = 36 %
71 Ga has a naturally abundance of 36%
69 Ga has a naturally abundance of 64%
Answer:
d = 43.5 g/cm³
Explanation:
Given data:
Mass of magnesium cube = 217.501 g
Volume of magnesium cube = 5.00 cm³
Density of magnesium cube = ?
Solution:
Formula:
d = m/v
d = density
m = mass
v = volume
by putting values,
d = 217.501 g/ 5.00 cm³
d = 43.5 g/cm³
Answer:
Uh first of all this is algebra but I'll answer this
First distribute the three and 5 (Multiply them by both terms inside parenthesis.
3x-6=5x+20
Then add like terms
8x=14
Divide 8 by 8 and 8 by 14
x = 14/8
Explanation:
Answer:
Yes, but it must be kept at that value and do not let it to decrease more.
Explanation:
Hello.
In this case, in order to substantiate whether the cabin meet the federal standards, we need to convert the 500 mmHg to atm and compare the result with 0.72 atm by knowing that 1 atm equals 760 mmHg:

Thus, since 0.66 atm is 0.06 atm away from the federal standard we can infer that it may meet the federal standard, however, it would not be recommended to let the pressure decrease more than that.
Place a burning splint near the opening of a test tube. If a popping noise occurs, it's probably hydrogen. Place a glowing splint in the test tube, and if it reignites, it could be oxygen. Place a burning splint into a test tube, and if it goes out, it could be carbon dioxide.