Answer:
1. Electromagnetic waves travel in a vacuum whereas mechanical waves do not.
2. The ripples made in a pool of water after a stone is thrown in the middle are an example of mechanical wave. Examples of electromagnetic waves include light and radio signals.
3. Mechanical waves are caused by wave amplitude and not by frequency. Electromagnetic Waves are produced by vibration of the charged particles.
4. While an electromagnetic wave is called just a disturbance, a mechanical wave is considered a periodic disturbance.
Explanation:
Answer:
v = -1.8t+36
20 seconds
360 m
40 seconds
36 m/s
The object speed will increase when it is coming down from its highest height.
Explanation:

Differentiating with respect to time we get

a) Velocity of the object after t seconds is v = -1.8t+36
At the highest point v will be 0

b) The object will reach the highest point after 20 seconds

c) Highest point the object will reach is 360 m


d) Time taken to strike the ground would be 20+20 = 40 seconds
![[tex]v=u+at\\\Rightarrow v=0+0.9\times 2\times 20\\\Rightarrow v=36\ m/s](https://tex.z-dn.net/?f=%5Btex%5Dv%3Du%2Bat%5C%5C%5CRightarrow%20v%3D0%2B0.9%5Ctimes%202%5Ctimes%2020%5C%5C%5CRightarrow%20v%3D36%5C%20m%2Fs)
Acceleration will be taken as positive because the object is going down. Hence, the sign changes. 2 is multiplied because the expression is given in the form of 
e) The velocity with which the object strikes the ground will be 36 m/s
f) The speed will increase when the object has gone up and for 20 seconds and falls down for 20 seconds. The object speed will increase when it is coming down from its highest height.
An image that appears upside down behind the focal point is an image that is reflected on a concave mirror. Mirrors reflect different kinds of images based on the placement of an object that is reflected towards it. There are two kinds of mirrors, concave and a convex mirrors, the latter makes objects seem smaller and farther than where it is exactly.
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.