Answer:
Postulate: Gas particles are extremely small and are far apart.
The activities can be used to demonstrate the postulate is :
<u>Observing colored gas spreading into an inverted jar placed on top of a jar containing the gas</u>
<u />
Explanation:
colored gas spreading into an inverted jar placed on top of a jar containing the gas:
This occur because of two reasons:
1. <em><u>The Gaseous particles are largely spaced . There is large distance between the gases molecule</u></em>
<em><u>2. The gases are in continuous motion . Hence they posses very high kinetic energy . This is the reason they mixes quickly if placed in a jar.</u></em>
<em><u>This occur by the process of diffusion. </u></em>
Diffusion of Gases: The intermixing of particles from the region of high concentration to low concentration.
The coloured gas goes into the space between the gaseous molecule present in the jar.(Gases are far apart)
As soon as the coloured gas is mixed in the jar , It spread quickly by diffusion because , The gaseous particles are extremely small and are far apart.
Yes because condensed milk and
evaporated milk are similar to one another. However, there won't be the same sweet flavor but the texture is the same.
Formula: NA2S2O3. Valency: 2
Answer : The number of molecules present in nitrogen gas are,
Explanation :
First we have to calculate the moles of nitrogen gas by using ideal gas equation.
where,
P = Pressure of
gas =
(1 atm = 760 mmHg)
V = Volume of
gas = 985 mL = 0.982 L (1 L = 1000 mL)
n = number of moles
= ?
R = Gas constant =
T = Temperature of
gas =
Now put all the given values in above equation, we get:

Now we have to calculate the number of molecules present in nitrogen gas.
As we know that 1 mole of substance contains
number of molecules.
As, 1 mole of
gas contains
number of molecules
So,
mole of
gas contains
number of molecules
Therefore, the number of molecules present in nitrogen gas are,
Anything that has mass and volume (takes up space) is called matter.