Answer:
1. Increase in the temperature of the water
2. Increasing the surface area of the lithium
Explanation:
1. Increase in the temperature of the water
The activation energy for the lithium water reaction is +161 kJ/mol while the activation energy for the sodium is +109 kJ/mol, hence for increased reaction rate, the water temperature will be raised to enable more lithium atoms enter into reaction with the water molecules as their energy is increased lowering the activation energy required for the reaction.
2. Increasing the surface area of the lithium
As the lithium floats on the water, due to its low temperature and the heat evolved from the reaction of lithium with the cold water is below the melting point of lithium, the reaction rate can be increased by increasing the surface area of lithium sample by grinding so as to increase the number of lithium water reaction sites.
Not quite sure what you're asking, but I think what you're looking for is 'Native Species'.
Answer: i think it's 4 oxygen atoms
Explanation:
so sorry if i'm wrong
The answer is C. One item replacing another is a single replacement, but when two items trade places in two separate molecules it’s double replacement.
Answer:In ionic compounds, electrons are transferred between atoms of different elements to form ions. But this is not the only way that compounds can be formed. Atoms can also make chemical bonds by sharing electrons equally between each other. Such bonds are called covalent bonds. Covalent bonds are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). For example, two hydrogen atoms bond covalently to form an H2 molecule; each hydrogen atom in the H2 molecule has two electrons stabilizing it, giving each atom the same number of valence electrons as the noble gas He.
Compounds that contain covalent bonds exhibit different physical properties than ionic compounds. Because the attraction between molecules, which are electrically neutral, is weaker than that between electrically charged ions, covalent compounds generally have much lower melting and boiling points than ionic compounds. In fact, many covalent compounds are liquids or gases at room temperature, and, in their solid states, they are typically much softer than ionic solids. Furthermore, whereas ionic compounds are good conductors of electricity when dissolved in water, most covalent compounds are insoluble in water; since they are electrically neutral, they are poor conductors of electricity in any state.