Answer: Formula for Acceleration Due to Gravity
These two laws lead to the most useful form of the formula for calculating acceleration due to gravity: g = G*M/R^2, where g is the acceleration due to gravity, G is the universal gravitational constant, M is mass, and R is distance.please mark as brainliest
Explanation:
Answer:
W = -0.480 J
Explanation:
given,
q₁ = 4 μC
q₂ = -4.10 μC


b = 0.381
k = 8.99 × 10⁹ Nm²/C²

![W = [-147.436\times (5.88-2.62)\times 10^{-3}]J](https://tex.z-dn.net/?f=W%20%3D%20%5B-147.436%5Ctimes%20%285.88-2.62%29%5Ctimes%2010%5E%7B-3%7D%5DJ)
W = -0.480 J
Work done by the electric force W = -0.480 J
Explanation:
Yes, it is possible to have zero speed while accelerating, but only for a moment. ... acceleration is the rate at which the speed and direction of an object changes over time, so whenever an object goes through zero speed while reversing directions, it has non-acceleration. zero but a speed of zero.
Answer:
A. 1.125×10^-7 kgm^2
B. 6.64875 rad/s
Explanation:
The moment of inertia is defined as a quantity expressing a body's tendency to resist angular acceleration, which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation.
A. Moment of inertia = m1✖r1^2
=1.80 x (2.5x10^-4)^2
= 6.25x10^8 x 1.80
= 1.125 x 10^-7 kgm^2.
B. w is represented as Angular speed.
V is velocity, T is time in period.
Velocity= distance / time.
V= 2.5x10^-4 / 0.940
V= 2.6595 metre per seconds
w= v/r
w= 2.6595 / 0.400
w= 6.64875 rad/s.