A covalent bond describes two atoms (most likely nonmetals) that share their valence electrons to satisfy the octet rule. Carbon and oxygen are both nonmetals, and they would share electrons with each other through a bond that is not polar enough to be considered ionic. The answer should be B
The correct answer is letter D: Quartz.
Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:

The answer would be modeling, because craving is when you take a block of something and slice it t make something,and casting is when you put layers over layers to form a something. so the answer will be modeling.
Answer: 8moles
Explanation:
The reaction below shows the formation of 2 moles of water from 2 moles of hydrogen and 1 mole of oxygen respectively.
2H2(g) + O2 (g) --> 2H2O(l)
So, if 1 mole of O2 produce 2 mole of H2O
4 moles of O2 will produce Z mole of H2O
To get the value of Z, cross multiply
1 x Z = 4 x 2
Z = 8
So, the equation will be 8H2(g) + 4O2 (g) --> 8H2O(l)
Thus, 4 moles of O2 will produce 8moles of H2O .