The lattice energy of the compounds is distributed in the following decreasing order of magnitude: MgO > CaO > NaF > KCl.
<h3>KCl or NaF, which has a higher lattice energy?</h3>
The lattice energy increases with increasing charge and decreasing ion size.(Refer to Coulomb's Law.)MgF2 > MgO.Following that, we can examine NaF and KCl (both of which have 1+ and 1-charges), as well as atomic radii.NaF will have a larger LE than KCl since Na is smaller then K and F was smaller than Cl.
<h3>MgO or CaO, which has a larger lattice energy?</h3>
MGO is more difficult than CaO, hence.This is because "Mg" (two-plus) ions are smaller than "Ca" (two-plus) ions in size.MgO has higher lattice energy as a result.
To know more about compounds visit:
brainly.com/question/14117795
#SPJ4
Answer:
Explanation:
We usually approximate the density of water to about at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about . For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at , and the density at this point is exactly .
The general equation for radioactive decay is;
N = N₀e^(-λt)
x - decay constant (λ) - rate of decay
t- time
N - amount remaining after t days , since we are calculating the half life, amount of time it takes for the substance to to be half its original value, its N₀/2
N₀ - amount initially present
substituting the values
N₀/2 = N₀e^(-0.081t)
0.5 = e^(-0.081t)
ln (0.5) = -0.081t
-0.693 = -0.081t
t = 0.693 / 0.081
= 8.55
half life of substance is 8.55 days
Here are the answers in order:
1. During a physical change the substance changes physically.
2. The law of conservation of mass is a law stating the conservation of mass cannot be higher than 46mg or lower than 32mg.
3. A hypothesis is a guess that you make before completing a science experiment, it can be considered a law because it is important to know why you are making the guess.
4. During a chemical change the mass is changing colors. This is a representation of a chemical change.
5. Oil is a non-renewable resource, so it cannot demonstrate the conservation of mass.
6. When the color of the substance has changed or when it explodes.
7. Reactants are the objects that react when in a chemical change.
8. If you follow the rule of not going higher than 46mg and not lower than 32mg then it will automatically follow this law.
Chemical Reactions Part One Video:
1. mass
2. erupt-ant
3. reactant
4. object
5. mixtures
6. molecules
7. color changed
Questions again:
1. A chemical reaction
2. A physical change
3. Because if it is no higher than 46mg and no lower than 32mg then it will follow on it's own.
By decreasing n we can increase presure because decrease in n will shift equilibrium to either forward or reverse direction