Answer:
Explanation:
Velocity is a physical quantity that expresses the relationship between the space traveled by an object, the time taken for it and its direction. In other words, velocity is associated with the change of position of a body over time.
Its unit in the International System of Units is the meter per second (
), but it can also be expressed in 
So, in this case, the speed on the way to work will be:

velocity= 36 
The velocity on the way back home will be:

velocity= 27 
Answer:
282.7KPa
Explanation:
Step 1:
Data obtained from the question.
Number of mole of (n) = 1.5 mole
Volume (V) = 13L
Temperature (T) = 22°C = 22 + 273°C = 295K
Pressure (P) =..?
Gas constant (R) = 0.082atm.L/Kmol
Step 2:
Determination of the pressure exerted by the gas.
This can be obtained by using the ideal gas equation as follow:
PV = nRT
P = nRT /V
P = 1.5 x 0.082 x 295 / 13
P = 2.79atm.
Step 3:
Conversion of 2.79atm to KPa.
This is illustrated below:
1 atm = 101.325KPa
Therefore, 2.79atm = 2.79 x 101.325 = 282.7KPa
Therefore, the pressure exerted by the gas in KPa is 282.7KPa
Answer:
structure formula C3H5CH3
Answer:
a. the maximum number of σ bonds that the atom can form is 4
b. the maximum number of p-p bonds that the atom can form is 2
Explanation:
Hybridization is the mixing of at least two nonequivalent orbitals, in this case, we have the mixing of one <em>s, 3 p </em> and <em> 2 d </em> orbitals. In hybridization the number of hybrid orbitals generated is equal to the number of pure atomic orbital, so we have 6 hybrid orbital.
The shape of this hybrid orbital is octahedral (look the attached image) , it has 4 orbital located in the plane and 2 orbital perpendicular to it.
This shape allows the formation of maximum 4 σ bond, because σ bonds are formed by orbitals overlapping end to end.
And maximum 2 p-p bonds, because p-p bonds are formed by sideways overlapping orbitals. The atom can form one with each one of the orbitals located perpendicular to the plane.
The answer is D, location, because you'd have moved spots that could be altered.