Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Answer: A
<u>Explanation:</u>
NOTES:
d = 650 meters
t = 10 seconds
**********************************
v = d/t
= 650 meters/10 seconds
= 65 meters/second
Atomic Number
or
Number of Protons
ΩΩΩΩΩΩΩΩΩΩ
Answer:
travilng on a curve in the road
Explanation:
Answer:
269 m
45 m/s
-58.6 m/s
Explanation:
Part 1
First, find the time it takes for the package to land. Take the upward direction to be positive.
Given (in the y direction):
Δy = -175 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(-175 m) = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 5.98 s
Next, find the horizontal distance traveled in that time:
Given (in the x direction):
v₀ = 45 m/s
a = 0 m/s²
t = 5.98 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (45 m/s) (5.98 s) + ½ (0 m/s²) (5.98 s)²
Δx = 269 m
Part 2
Given (in the x direction):
v₀ = 45 m/s
a = 0 m/s²
t = 5.98 s
Find: v
v = at + v₀
v = (0 m/s²) (5.98 s) + (45 m/s
v = 45 m/s
Part 3
Given (in the y direction):
Δy = -175 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (-9.8 m/s²) (-175 m)
v = -58.6 m/s