Hi there!
On a level road:
∑F = Ff (Force due to friction)
The net force is the centripetal force, so:
mv²/r = Ff
Rewrite the force due to friction:
mv²/r = μmg
Cancel out the mass:
v²/r = μg
Solve for v:
v = √rμg
v = √(25)(9.81)(0.8) = 14.01 m/s
I think it would be d because development in nations needs more population
Answer:
Explanation:
Let the volume of the unknown bulb = X L
The volume of the system , after opening valve = (X + 0.72 L )
Use Boyles law gas equation,
P1V1 = P2V2 ( at temperature is constant )
Given:
P1 = 1.2 atm
P2 = 683 torr
Converting mmHg to atm,
1 atm = 760 mmHg(torr)
683 mmHg = 683/760
= 0.8987 atm
1.2X = 0.8987*(X + 0.720)
1.2X = 0.8987X + 0.6471
0.3013X = 0.6471
X = 2.15 L
Answer: 7.41 m/s
Explanation: By using the law of of energy, kinetic energy of the brick as it falls equals the potential energy before falling.
Kinetic energy = mv²/2, potential energy = mgh
mv²/2 = mgh
v²/2 = gh
v² = 2gh
v = √2gh
Where g = 9.8 m/s², h = 2.80m
v = √2×9.8×2.8 = 7.41 m/s
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png
Solution:
We need to find the magnitude of the resultant on both x- and y-axis.
x-axis) The resultant on the x-axis is

in the positive direction.
y-axis) The resultant on the y-axis is

in the positive direction.
Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using

from which we find