Answer:
0.076 m/s
Explanation:
Momentum is conserved:
m v = (m + M) V
(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V
V = 0.076 m/s
After catching the puck, the goalie slides at 0.076 m/s.
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium is reached, i.e. until their temperatures are equal. We say that heat flows from the hotter to the cooler object. Heat is energy on the move.
Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT
Let’s say you have a spring. You press on the spring with your finger. The spring goes down. This is the action force. Then, the spring goes back up after you take your finger off of it. This is known as the reaction force.