Answer:
40.4 kJ
Explanation:
Step 1: Given data
- Heat of sublimation of CO₂ (ΔH°sub): 32.3 kJ/mol
Step 2: Calculate the moles corresponding to 55.0 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
n = 55.0 g × 1 mol/44.01 g = 1.25 mol
Step 3: Calculate the heat (Q) required to sublimate 1.25 moles of CO₂
We will use the following expression.
Q = n × ΔH°sub
Q = 1.25 mol × 32.3 kJ/mol = 40.4 kJ
Answer:
Mass of sodium chloride decomposed = 24.54 g
Explanation:
Given data:
Mass of sodium chloride decomposed = ?
Mass of chlorine gas formed = 15 g
Solution:
Chemical equation:
2NaCl → 2Na + Cl₂
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 15 g/ 71 g/mol
Number of moles = 0.21 mol
Now we will compare the moles of Cl₂ with NaCl from balance chemical equation.
Cl₂ : NaCl
1 : 2
0.21 : 2×0.21 = 0.42 mol
Mass of Sodium chloride decompose:
Mass = number of moles × molar mass
Mass = 0.42 mol × 58.44 g/mol
Mass = 24.54 g
<h3>
Answer:</h3>
56.11 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Compound] KOH
<u>Step 2: Identify</u>
[PT] Molar Mass of K - 39.10 g/mol
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mass of H - 1.01 g/mol
<u>Step 3: Find</u>
39.10 + 16.00 + 1.01 = 56.11 g/mol
Because cytoplasm is made of a jelly like consistent