<u>Answer: </u>The molar mass of the metal is 96.45 g/mol
<u>Explanation:</u>
The fluoride of the metal formed is 
The oxidation half-reaction follows:

Calculating the theoretical mass deposited by using Faraday's law, which is:
......(1)
where,
m = actual mass deposited = 1.25 g
M = molar mass of metal = ?
I = average current = 3.86 A
t = time period in seconds = 16.2 min = 972 s (Conversion factor: 1 min = 60 sec)
n = number of electrons exchanged = 
F = Faraday's constant = 96500 C
Putting values in equation 1, we get:

Hence, the molar mass of the metal is 96.45 g/mol
Answer:
True; When one side of a molecule is electronegative (δ-) and the other side of the
molecule is electropositive (δ+), it is said to have a dipole moment.
Explanation:
A dipole moment exists in a molecule as a result of differences in the electronegativity values between the atoms of the elements involved in the chemical bonding.
When a strogly electronegative atom such as oxygen or chlorine is chemically bonded to a less electronegative or an electropositive atom such as hydrogen, there is an uneven sharing of the electrons involved in the bonding. The more electronegative atoms tends to draw the shared electrons mostly to themselves. This induces a partially negative charge (δ-) on them while leaving the electropositive atoms with a partially positive charge (δ+).
Water is an example of a molecule having a dipole moment. The oxygen atoms are more electronegative than hydrogen and as such draw the shared electrons to themselves more, inducing a partial positive charge (δ+) on the hydrogen atoms while they themselves develop a partial negative charge (δ-).
Answer:
I think B but I'm not sure.
Barium Chloride
Aluminum Iodide
Lithium Phosphide
Sodium Nitride
Potassium Sulfide
Aluminum Oxide
Sodium Oxide
Rubidium Bromide
Calcium Phosphide
hope this helps for the names
Answer:
Step 1: The Unbalanced Chemical Equation. The unbalanced chemical equation is given to you. ...
Step 2: Make a List. ...
Step 3: Identifying the Atoms in Each Element. ...
Step 4: Multiplying the Number of Atoms. ...
Step 5: Placing Coefficients in Front of Molecules. ...
Step 6: Check Equation. ...
Step 7: Balanced Chemical Equation.
Explanation: