Answer:
Newton's second law of motion describes the relationship between force and acceleration. They are directly proportional. If you increase the force applied to an object, the acceleration of that object increases by the same factor. In short, force equals mass times acceleration.
Explanation:
The linear speed of the pepperoni is 0.628 m/s. Its direction is tangential to the circle.
We know that;
v = rω
r = radius of the piece = 10 cm or 0.1 m
ω = angular velocity
We have to convert 60 revolutions per minute to radians per second
1 rev/min = 0.10472 rad/s
60 revolutions per minute = 60 rev/min × 0.10472 rad/s/1 rev/min
= 6.28 rad/s
v = 0.1 m × 6.28 rad/s
v = 0.628 m/s
The direction of this velocity is tangential to the circle.
Learn more: brainly.com/question/4612545
Explanation:
The given data is as follows.
F = 3.2 N, m = 18.2 kg,
t = 0.82 sec
(a) Formula for impulse is as follows.
I = Ft = 
Ft = 
or, 
Putting the given values into the above formula as follows.

= 
= 0.144 m/s
Therefore, final velocity of the mass if it is initially at rest is 0.144 m/s.
(b) When velocity is 1.85 m/s to the left then, final velocity of the mass will be calculated as follows.
Ft = 
or, 
=
= -1.705 m/s
Hence, we can conclude that the final velocity of the mass if it is initially moving along the x-axis with a velocity of 1.85 m/s to the left is 1.705 m/s towards the left.
Answer:
v = 88.89 [m/s]
Explanation:
To solve this problem we must use the principle of conservation of momentum which tells us that the initial momentum of a body plus the momentum added to that body will be equal to the final momentum of the body.
We must make up the following equation:

where:
F = force applied = 4000 [N]
t = time = 0.001 [s]
m = mass = 0.045 [kg]
v = velocity [m/s]
![4000*0.001=0.045*v\\v=88.89[m/s]](https://tex.z-dn.net/?f=4000%2A0.001%3D0.045%2Av%5C%5Cv%3D88.89%5Bm%2Fs%5D)