Answer:
Angular speed = 27.78 rad/s (Approx)
Explanation:
Given:
Diameter = 21.6 cm
Speed = 3 m/s
Find:
Angular speed
Computation:
Radius = 21.6 / 2 = 10.8 cm = 0.108 m
Angular speed = v / r
Angular speed = 3 / 0.108
Angular speed = 27.78 rad/s (Approx)
Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²
Answer:

Explanation:
given,
Angular speed of the tire = 32 rad/s
Displacement of the wheel = 3.5 rev
Δ θ = 3.5 x 2 π
= 7 π rad
now,
Time interval of the car to rotate 7π rad
using equation



Time taken to rotate 3.5 times is equal to 0.687 s.
Answer:
Period of motion is approximately 0.5447 seconds
Explanation:
We start by calculating the constant "k" of the spring which can be derived from the fact that an object of mass 12 g produced a stretch of 3.4 cm: (we write everything in SI units)
F = k * x
0.012 kg * 9.8 m/s^2 = k 0.034 m
k = 0.012 kg * 9.8 m/s^2 / (0.034 m)
k = 3.46 N/m
now we use the formula for the period (T) of a spring of constant k with a hanging mass 'm':

which in our case becomes:
