Answer:
100,200J of heat is required to convert 0.3kg of ice of 0°C to water at same temperature.
Explanation:
Heat = mass * lf
Latent heat of fusion (lf) of water is 334J/g
Heat = 300g * 334 J/g
Heat = 100,200J of heat
Answer:
c = 4,444.44
Explanation:
You have the following expression for the acceleration of the projectile:
(1)
s: distance to the ground of the projectile
To find the value of the constant c you use the following formula:
(2)
vo: initial velocity = 0 m/s
v: final speed = 200 m/s
Δs: distance traveled by the projectile = 3m - 1.5m = 1.5m
You replace the expression (1) into the expression (2):

You do the constant c in the last equation, then you replace the values of v, s and Δs:

Answer:
The minimum coefficient of friction required is 0.35.
Explanation:
The minimum coefficient of friction required to keep the crate from sliding can be found as follows:


Where:
μ: is the coefficient of friction
m: is the mass of the crate
g: is the gravity
a: is the acceleration of the truck
The acceleration of the truck can be found by using the following equation:


Where:
d: is the distance traveled = 46.1 m
: is the final speed of the truck = 0 (it stops)
: is the initial speed of the truck = 17.9 m/s
If we take the reference system on the crate, the force will be positive since the crate will feel the movement in the positive direction.

Therefore, the minimum coefficient of friction required is 0.35.
I hope it helps you!
6050 J is the kinetic energy at D
<u>Explanation:</u>
In physics, the object's kinetic energy (K.E) defined as the energy it possesses during movement. It can be defined as the required work to accelerate a certain body weight in order to rest at a certain speed. When the body receives this energy as it speeds up (accelerates), it retains this energy unless speed varies. The equation is given as,

Where,
m - mass of an object
v - velocity of the object
Here,
Given data:
m = 100 kg
v = 11 m/s
By substituting the given values in the above equation, we get
