The final velocity of the projectile when it strikes the ground below is 198.51 m/s.
<h3>
Time of motion of the projectile</h3>
The time taken for the projectile to fall to the ground is calculated as follows;
h = vt + ¹/₂gt²
where;
- h is height of the cliff
- v is velocity
- t is time of motion
265 = (185 x sin45)t + (0.5)(9.8)t²
265 = 130.8t + 4.9t²
4.9t² + 130.8t - 265 = 0
solve the quadratic equation using formula method,
t = 1.89 s
<h3>Final velocity of the projectile</h3>
vyf = vyi + gt
where;
- vyf is the final vertical velocity
- vyi is initial vertical velocity
vyf = (185 x sin45) + (9.8 x 1.89)
vyf = 149.322 m/s
vxf = vxi
where;
- vxf is the final horizontal velocity
- vxi is the initial horizontal velocity
vxf = 185 x cos(45)
vxf = 130.8 m/s
vf = √(vyf² + vxf²)
where;
- vf is the speed of the projectile when it strikes the ground below
vf = √(149.322² + 130.8²)
vf = 198.51 m/s
Learn more about final velocity here: brainly.com/question/6504879
#SPJ1
Answer:

Explanation:
The maximum speed of the block occurs when spring has no deformation, that is, there is no elastic potential energy, which can be remarked from appropriate application of the Principle of Energy Conservation:



Answer:
Chromatic aberration is a visual effects that distorts the image. It occurs when different wavelengths of light are focused at different distances from the lens as a result of which light passing through the prism bends and the color wavelengths are separated. This is called chromatic aberration.
Answer:
<em>The canyon is approximately 314 meters away</em>
Explanation:
<u>Speed of Sound</u>
If we emit sounds in an open space where a large obstacle (like a mountain) is expected to return the sounds, then it will travel forth and back at a given speed for a certain time. We can assume the speed of sound is constant, so we could know the approximate distance of the mountain (or canyon in our case) by the known formula.

Where
is the speed of sound and t is half the time we hear our echo.
The speed of sound in m/s can be calculated from the approximate formula in terms of the temperature T in degrees Celsius

We have
, so


Let's compute x, for t=1.8/2=0.9 seconds


The canyon is approximately 314 meters away
Answer:

Explanation:
The average speed is defined as:

Using the equations for uniformly accelerated motion, we calculate the runner's acceleration:

Now, we can calculate the distance that the runner travels:

Finally, we calculate the runner's average speed:
