Answer:
13 km/h
Explanation:
Average speed = distance/time
Let the total distance and total time taken for the whole trip be d km and t hours respectively
Average speed for the whole trip = 82 km/h
d = 82t
The distance covered in the first half = d1/2
Time taken = t/2
Average speed = 69 km/h
69 = d1/2 ÷ t/2
d1 = 69t
The distance covered in the second half = d2/2
Time taken = t/2
Let the average sly for the see half be A
A = d2/2 ÷ t/2
d2 = At
d = d1 + d2
82t = 69t + At
At = 82t - 69t
At = 13t
A = 13t/t = 13 km/h
0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
7.2 - 5 = 2.2 kg m/s is the motmentum of the ball now
the velocity is 2.2/0.4 = 5.5 m/s
To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.
The diple moment associated with an iron bar is given by,

Where,
Dipole momento associated with an Atom
N = Number of atoms
y previously given in the problem and its value is 2.8*10^{-23}J/T


The number of the atoms N, can be calculated as,

Where
Density
Molar Mass
A = Area
L = Length
Avogadro number


Then applying the equation about the dipole moment associated with an iron bar we have,



PART B) With the dipole moment we can now calculate the Torque in the system, which is



<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>
Answer:
170 W
Explanation:
Applying
P = VI.................... Equation 1
Where P = Power generated in watt, V = Voltage supplied to the circuit, I = Current running through the circuit.
From the question,
Given: V = 17 V, I = 10 A
Substitute these values into equation 1
P = (17×10)
P = 170 Watt.
Hence the power generated is 170 W.
The right option is A. 170 W
<span>Self-monitoring would be the best way to </span><span>determine your own correct intensity level. I hope this helps! <3
</span>