This question involves the concepts of the law of conservation of momentum and velocity.
The velocity of the eight ball is "5.7 m/s".
According to the law of conservation of momentum:

where,
m₁ = mass of number three ball = 5 g
m₂ = mass of the eight ball = 6 g
u₁ = velocity of the number three ball = 3 m/s
u₂ = velocity of the eight ball = - 1 m/s (negative sign due to opposite direction)
v₁ = final velocity of the three number ball = - 5 m/s
v₂ = final velocity of the eight ball = ?
Therefore,
(5 g)(3 m/s) + (6 g)(- 1 m/s) = (5 g)(- 5 m/s) + (6 g)(v₂)

<u>v₂ = 5.7 m/s</u>
<u></u>
Learn more about the law of conservation of momentum here:
brainly.com/question/1113396?referrer=searchResults
Answer:
The mass of the products and reactants are the same on both sides of the equation.
The number of atoms of products and reactants are equal and hence it proves the law of conservation of mass.
.
Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
<h3>The answer is 2.51 s</h3>
Explanation:
The time taken can be found by using the formula

d is the distance
v is the velocity
From the question we have

We have the final answer as
<h3>2.51 s</h3>
Hope this helps you