Answer:
b. Conducts electricity when dissolved in water
Explanation:
Iron(II) chloride, is the chemical compound with formula FeCl2.
It is a solid with a high melting point of about 677 degree Celsius or 950 K when in anhydrous form but have lower melting point in hydrated form.
The compound is often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in the laboratory.
There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.
<u>Answer:</u>
The percent composition of this compound is 94%
<u>Explanation:</u>
The reaction can be formed as






Based on no. of iron reacted,

n = m/M

% composition of
= 
= 94%
Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon).
Explanation: pls mark brainliest :))
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
1st law: Inertia, If you roll a ball it will not stop unless something blocks it by force.
2nd law: Force and Acceleration, when you’re riding a bike you are pushing the pedal with ur muscle which means you’re using force. Everytime you push the pedal the bike goes faster and faster which explains acceleration.
3rd law: Action and Reaction, If you run you’re feet pushes the ground (action) when your feet touches the ground it pushes you forward (reaction)