Given:
Stock dose/concentration of 20% Acetylcysteine (200 mg/mL)
150 mg/kg dose of Acetylcysteine
Weight of the dog is 13.2 lb
First we must convert 13.2 lb to kg:
13.2 lb/(2.2kg/lb) = 6 kg
Then we must calculate the dose:
(150 mg/kg)(6kg) = 900 mg
Lastly, we must calculate the dose in liquid form to be administered:
(900 mg)/(200 mg/mL) = 4.5 mL
Therefore, 4.5 mL of 20% Acetylcysteine should be given.
Answer:
1. water will freeze at a temperature below 32 degrees fahrenheit 0 degree celsius.
2. Ice will melt at a temperature above 32 degrees fahrenheit 0 degrees celsius.
3. water boils at 212 degrees fahrenheit or 100 degrees celsius.
Answer:
I think copper
Explanation:
Material IACS % Conductivity
Silver 105
Copper 100
Gold 70
Aluminum 61
Nickel 22
Zinc 27
Brass 28
Iron 17
Tin 15
Phosphor Bronze 15
Lead 7
Nickel Aluminum Bronze 7
Steel 3 to 15
the table might help- your indian brother
Answer:
1218.585
Explanation:
Looking at the subscripts we know there are 2 atoms of Fe, 3 atoms of C, and 6 of O.
Take the molar mass of each atom (from the periodic table) and multiply by the # of atoms
Fe: 55.845×2= 111.69
C: 12.011×3= 36.033
O:15.999×6=95.994
Add the values together: 243.717 g/mol
That is 1 mole of the molecule. Multiply by 5 for the final answer.
243.717×5=1218.585
Answer:
55.3 × 10²³ molecules
Explanation:
Given data:
Number of moles of C₁₁H₁₂O₂₂ = 9.18 mol
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
For given data:
9.18 mol × 6.022 × 10²³ molecules /1 mol
55.3 × 10²³ molecules