That would be true because a solid object can cast a shadow
Answer:
glass if for a good view, but for absorbing heat concrete and brick is the best
Explanation:
wood is not a good idea bc it can cause fires from too much heat and it absorbs less heat but all of that depends on how good the material your using
Here it is given that speed of migrating Robin is 12 m/s relative to air
so we can say that
North
so it will be
Let North direction is along Y axis and East direction is along X axis

also it is given that speed of air is 6.7 m/s relative to ground

now as we know by the concept of relative motion


now by rearranging the terms


now we need to find the speed of Robin which means we need to find the magnitude of its velocity which we found above
So here we will say


so the net speed of Robin with respect to ground will be 13.7 m/s
Answer:
The diameter of the camera aperture must be greater than or equal to 1.49m
Explanation:
Let the distance separating two objects, x = 6.0 cm = 0.06 m
The distance between the observer and the two objects, d = 160 km = 160000 m
Let ∅ = minimum angular separation between the two objects that the satellite can resolve
tan( ∅) = x/d
Since there is minimum angular separation, tan( ∅) ≈∅
∅ = x/d
∅ = 0.06/160000
∅ = 3.75 * 10⁻⁷rad
For the satellite to be able to resolve the objects,
D ≥ 1.22λ/∅
λ = 560 nm = 560 * 10⁻⁹
D ≥ 1.22 * (560 * 10⁻⁹)/(3.75 * 10⁻⁷)
D ≥ 149.33 * 10⁻² m
D ≥ 1.49 m