Answer:
The Density of the block is 4.667g/mL
Explanation:
Given the following data;
Mass of block = 700g
Volume of block = 150cm³
Density = ?
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the equation;

Substituting into the equation, we have;

<em>Density = 4.667g/mL</em>
Answer: A
Explanation:Earthquakes occur on faults - strike-slip earthquakes occur on strike-slip faults, normal earthquakes occur on normal faults, and thrust earthquakes occur on thrust or reverse faults. When an earthquake occurs on one of these faults, the rock on one side of the fault slips with respect to the other.
A <u>Food web</u> is multiple overlapping food chains.
Answer:
The mass of the planet is 55 times the mass of earth.
Explanation:
From the inverse-square gravitation law,
F = (GMm/r²)
If the weight of a body (the force with which the earth attracts a body to its centre) is to be calculated,
F = mg
m = mass of the body,
g = acceleration due to gravity
mg = (GMm/r²)
G = Gravitational constant
M = mass of the earth
m = mass of body
r = distance between the body and the centre of the earth = radius of the earth
The acceleration due to gravity is given by
g = (GM/r²)
Making the mass of the earth, the subject of formula
M = (gr²/G) (eqn 1)
So, the planet described,
Let the acceleration due to gravity on the planet be g₁
Mass of the planet be M₁
Radius of the planet be r₁
g₁ = 2.2g
r₁ = 5r
M₁ = ?
Note that the gravitational constant is the same for both planets.
So, we can write a similar expression for the planet's acceleration due to gravity
g₁ = (GM₁/r₁²)
Substituting all the parameters known in terms of their corresponding earth values
2.2g = [GM₁/(5r)²]
2.2g = [GM₁/25r²]
M₁ = (55gr²/G)
Recall the expression for the mass of the earth
M = (gr²/G)
M₁ = 55 M
The mass of the planet, in terms of Earth masses = 55M
The mass of the planet is 55 times the planet of earth.
Hope this Helps!!!
Let's start with the total amount of energy available for the whole scenario:
Some kind of machine gave the coaster a bunch of potential energy by
dragging it up to the top of a 45m hill,and that's the energy is has to work with.
Potential energy = (M) (G) (H) = (800) (9.8) (45) = 352,800 joules
It was then given an extra kick ... enough to give it some kinetic energy, and
start it rolling at 4 m/s.
Kinetic energy = (1/2) (M) (V)² = (1/2) (800) (4)² = 6,400 joules
So the coaster starts out with (352,000 + 6,400) =<em> </em><u><em>359,200 joules</em></u><em> </em>of energy.
There's no friction, so it'll have <u>that same energy</u> at every point of the story.
=================================
Skip the loop for a moment, because the first question concerns the hill after
the loop. We'll come back to it.
The coaster is traveling 10 m/sat the top of the next hill. Its kinetic energy is
(1/2) (M) (V)² = (400) (10)² = 40,000 joules.
Its potential energy at the top of the hill is (359,200 - 40,000) = 319,200.
PE = (M) (G) (H)
319,200 = (800) (9.8) (H)
H = (319,200) / (800 x 9.8) = <em>40.71 meters</em>
=================================
Now back to the loop:
You said that the loop is 22m high at the top. The PE up there is
PE = (M) (G) (H) = (800) (9.8) (22) = 172,480 joules
So the rest is now kinetic. KE = (359,200 - 172,480) = 186,720 joules.
KE = (1/2) (M) (V)² = 186,720
(400) (V)² = 186,720
V² = 186,720 / 400 = 466.8
V = √466.8 = <em>21.61 m/s</em>
===============================
Now it looks like there should be another question ... that's why they
bothered to tell you that the end is 4m off the ground. They must
want you to find the coaster's speed when it gets to the end.
At 4m off the ground, PE = (M) (G) (H) = (800) (9.8) (4) = 31,360 joules.
The rest will be kinetic. KE = (359,200 - 31,360) = 327,840 joules
KE = (1/2) (M) (V)² = 327,840
400 V² = 327,840
V² = 327,840 / 400 = 819.6
V = √819.6 = <em>28.63 m/s</em> at the end
=======================================
If the official answers in class are a little bit different from these,
it'll be because they used some different number for Gravity.
I used '9.8' for gravity, but very often, they use '10' .
If the official answers in class are way way different from these,
then I made one or more big mistakes somewhere. Sorry.