1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
14

A 1.5-kg block slides at rest starts sliding down a snow-covered hill Point A, which has an altitude of 10 m. There is no fricti

on on hill. After leaving the hill at point B, it travels horizontally toward a massless spring with force constant of 200 N/m. While travelling, it encounters a 20-m patch of rough surface CD where the coefficient of kinetic friction is 0.15. (a) What is the speed of the block when it reaches point B
Physics
1 answer:
damaskus [11]3 years ago
7 0

Answer:

the speed of the block when it reaches point B is 14 m/s

Explanation:

Given that:

mass of the block slides = 1.5 - kg

height = 10 m

Force constant  = 200 N/m

distance of rough surface patch = 20 m

coefficient of kinetic friction = 0.15

In order to determine the speed of the block when it reaches point B.

We consider the equation for the energy conservation in the system which can be represented by:

\dfrac{1}{2}mv^2=mgh

\dfrac{1}{2}v^2=gh

v^2=2 \times g \times   h

v^2=2 \times 9.8 \times   10

v=\sqrt{2 \times 9.8 \times   10

v=\sqrt{196

v = 14 m/s

Thus; the speed of the block when it reaches point B is 14 m/s

You might be interested in
a mass of 0.75 kg is attached to a spring and placed on a horizontal surface. the spring has a spring constant of 180 N/m, and t
Artemon [7]

Answer:

6.57 m/s

Explanation:

First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement

F=kx; F=180(.3) = 54 N

Next from Newton's second law find the acceleration of the mass.

Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²

Now use the kinematic equation for velocity (or speed)

v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.

v₀=0, since the mass is at rest before we release it

a=72 m/s² (from above)

x₀=0 as the start position already compressed

x₂=0.3m (this puts the spring back to it's natural length)

v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²

v₂=\sqrt{43.2)\\ = 6.57 m/s

5 0
3 years ago
Raw data often appears in published scientific journals. Please select the best answer from the choices provided T F
Hatshy [7]

This statement is false

5 0
3 years ago
Read 2 more answers
How much time would it take for the sound of thunder to travel 2000 meters if sound travels of 330 meters per sec
Lubov Fominskaja [6]
2000÷330=6.06 repatant so the answer would be about 6.06 seconds
4 0
3 years ago
Read 2 more answers
Alex is asked to move two boxes of books in contact with each other and resting on a rough floor. He decides to move them at the
Over [174]

Answer:

Part a)

a= 0.32 m/s^2

Part b)

F_c = 3.6 N

Part c)

F_c = 5.5 N

Explanation:

Part a)

As we know that the friction force on two boxes is given as

F_f = \mu m_a g + \mu m_b g

F_f = 0.02(10.6 + 7)9.81

F_f = 3.45 N

Now we know by Newton's II law

F_{net} = ma

so we have

F_p - F_f = (m_a + m_b) a

9.1 - 3.45 = (10.6 + 7) a

a = \frac{5.65}{17.6}

a= 0.32 m/s^2

Part b)

For block B we know that net force on it will push it forward with same acceleration so we have

F_c - F_f = m_b a

F_c = \mu m_b g + m_b a

F_c = 0.02(7)(9.8) + 7(0.32)

F_c = 3.6 N

Part c)

If Alex push from other side then also the acceleration will be same

So for box B we can say that Net force is given as

F_p - F_f - F_c = m_b a

9.1 - 0.02(7)(9.8) - F_c = 7(0.32)

F_c = 9.1 - 0.02 (7)(9.8) - 7(0.32)

F_c = 5.5 N

3 0
3 years ago
The lowest note on a grand piano has a frequency of 27.5 Hz. The entire string is 2.00 m long and has a mass of 440g . The vibra
ANEK [815]

Answer:

Tension, T = 2038.09 N

Explanation:

Given that,

Frequency of the lowest note on a grand piano, f = 27.5 Hz

Length of the string, l = 2 m

Mass of the string, m = 440 g = 0.44 kg

Length of the vibrating section of the string is, L = 1.75 m

The frequency of the vibrating string in terms of tension is given by :

f=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}

\mu=\dfrac{m}{l}

\mu=\dfrac{0.44}{2}=0.22\ kg/m

T=4L^2f\mu

T=4\times (1.75)^2\times (27.5)^2 \times 0.22

T = 2038.09 N

So, the tension in the string is 2038.09 N. Hence, this is the required solution.

6 0
4 years ago
Other questions:
  • What would we need to know to calculate work and power
    15·1 answer
  • Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m, at a temp
    12·1 answer
  • QUICCCKKKKK!!!!!!!!!!Stimulus discrimination occurs when an organism generalizes one consequence to many stimuli similar to the
    8·2 answers
  • I need this right ASAP!!! plz plz plz
    6·2 answers
  • A copper transmission cable 170 km long and 10.0 cm in diameter carries a current of 100 A .
    14·1 answer
  • A 2430 pound roller coaster starts from rest and is launched such that it crests a 105 ft high hill with a speed of 59 mph. The
    10·1 answer
  • John is gardening and finds a tree root in the soil. He decides he will try to pull it out. He grabs onto it and uses a force of
    9·1 answer
  • Which term is defined as the force applied to the object divided by the mass of the object?
    12·1 answer
  • Electrons and protons travel from the Sun to the Earth at a typical velocity of 3.83 ✕ 105 m/s in the positive x-direction. Thou
    5·1 answer
  • A small boy is playing with a ball on a stationary train. If he places the ball on the floor of the train, when the train starts
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!