F = G m1*m2 / r^2 => [G] = [F]*[r]^2 /([m1]*[m2]) = N * m^2 / kg^2
That is one answer.
Also, you can use the fact that N = kg*m/s^2
[G] = kg * m / s^2 * m^2 / kg^2 = m^3 /(s^2 * kg)
In this case the rubber raft has horizontal and vertical motion.
Considering vertical motion first.
We have displacement
, u = Initial velocity, t = time taken, a = acceleration.
In vertical motion
s = 1960 m, u = 0 m/s, a = 9.81 

So raft will take 20 seconds to reach ground.
Now considering horizontal motion of raft
u = 109 m/s, t = 20 s, a = 0
So 
So shipwreck was 2180 meter far away from the plane when the raft was dropped.
Letter D: The amount of sleep a student gets affects student achievement
Answer:
call 7194936846 and ill help u out
Explanation:
The box is accelerated from rest to 4 m/s in a matter of 2.5 s, so its acceleration <em>a</em> is such that
4 m/s = <em>a</em> (2.5 s) → <em>a</em> = (4 m/s) / (2.5 s) = 1.6 m/s²
Then the force applied to the box has a magnitude <em>F</em> such that
<em>F</em> = (10 kg) (1.6 m/s²) = 16 N