Answer:
This question appears incomplete
Explanation:
However, it should be noted that addition of soluble salts generally lowers the freezing point of water hence after the addition, water will no longer freeze at 0°C but lower.
Soluble salts tend to form more ions in water, it is these ions that are responsible for interfering with the hydrogen bonds hence lowering the freezing. Thus, (since each bag are of the same weight) <u>the bag that contains the salt that ionizes more in water will lower the freezing point by the greatest amount</u>.
NOTE: Different weight of the salts could lead to more ions been formed in the water by some salts as against the other.
Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>
Answer:
Option (3)
Explanation:
Wind energy is directly derived from the wind. In the places where wind blowing is quite frequent, there wind mills are being set up, and the turbines in it rotates due to the prevailing wind. Due to this continuous motion of turbines, it collects the wind energy and it is being transferred into electrical energy.
It is cost-effective and does not produce any kind of pollution and is completely a renewable energy, that it can generated again and again.
It does have certain drawbacks also, because <u>the area may sometime do not experience constant wind, due to which it cannot store energy. So frequent wind blowing areas are the best place to set up windmills</u>.
Thus, the correct answer is option (3)
Answer:Ocean water is constantly moving, and not only in the form of waves and tides. Ocean currents flow like vast rivers, sweeping along predictable paths. Some ocean currents flow at the surface; others flow deep within water. Some currents flow for short distances; others cross entire ocean basins and even circle the globe.
By moving heat from the equator toward the poles, ocean currents play an important role in controlling the climate. Ocean currents are also critically important to sea life. They carry nutrients and food to organisms that live permanently attached in one place, and carry reproductive cells and ocean life to new places.
Explanation:
i got this off my chemistry sight.. your welcome