the amount of heat produced from the combustion of 24.3 g benzene (c6h6) is ΔH = -976.5 kJ
There are two moles of benzene involved in the process (C6H6). Since the heat of this reaction is -6278 kJ, the burning of 2 moles of benzene will result in a heat loss of 6278 kJ. This reaction is exothermic.
Enthalpy, or the value of H, is a unit of measurement for heat that relies on the amount of matter present (number of moles).
Thus, 24.3 g of benzene contains:
n = mass/molar mass, where n = 24.3/78.11, and n = 0.311 moles.
2 moles = 6278 kJ
0.311 moles =x
By the straightforward direct three rule:
2x = -1953.08 x = -976.5 kJ
Learn more about combustion here-
brainly.com/question/15117038
#SPJ4
Answer:
We can do the nitration of benzene by treating the benzene with a mixture of nitric acid and sulphuric acid by not extending the temperature of 50°C
Explanation:
Nitration of benzene takes place by treating the benzene with a mixture of nitric acid and sulphuric acid at low temperatures such as the temperatures below 50°C
The nitration of benzene takes place through electrophilic substitution reaction
In this reaction the electrophile is nitronium ion (NO2+) which performs an electrophilic substitution reaction on the benzene ring and during the reaction an intermediate will also be formed in which there will be positive charge distributed in the benzene
These electrophile is generated when nitric acid is treated with sulphuric acid
As nitric acid is a strong oxidising agent, here in this case the oxidation state of nitrogen will change from +5 to +3
The reactions regarding the nitration of benzene is present in the file attached
Here we apply the Clausius-Clapeyron equation:
ln(P₁/P₂) = ΔH/R x (1/T₂ - 1/T₁)
The normal vapor pressure is 4.24 kPa (P₁)
The boiling point at this pressure is 293 K (P₂)
The heat of vaporization is 39.9 kJ/mol (ΔH)
We need to find the vapor pressure (P₂) at the given temperature 355.3 K (T₂)
ln(4.24/P₂) = 39.9/0.008314 x (1/355.3 - 1/293)
P₂ = 101.2 kPa
Answer:
180,000 ants
Explanation:
For this problem we can create the following simple formula to solve this problem...
f(x) = 6x
where the variable x represents the number of ants that a single Anteater needs to eat per day. After a quick online search we can see that a single Anteater eats roughly 30,000 ants per day. If we use this value and plug it into the simple formula we can get the total number of ants 6 anteaters need to eat to survive.
f(x) = 6 * 30,000
f(x) = 180,000
Rubber it is basically the same thing