Answer: The ionic formula of compound is
and the name is cobalt phosphide.
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here element Co is having an oxidation state of +3 called as
cation and phosphprous forms
anion with oxidation state of -3. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
The nomenclature of ionic compounds is given by:
1. Positive is written first followed by the oxidation state of metal in roman numerals in square brackets.
2. The negative ion is written next and a suffix is added at the end of the negative ion. The suffix written is '-ide'.
Thus the name of
is cobalt phosphide.
<u>Answer:</u> The correct answer is geographical map.
<u>Explanation:</u>
Model is defined as the three dimensional representation of a proposed structure in a smaller scale.
For the given options:
<u>Option 1:</u> PV = nRT
This is a proposed law. This law is known as ideal gas law. A law is defined as the rule which defined a correct procedure. For any gas behaving ideally, this law is used.
<u>Option 2:</u> Geographical map
Map is defined as the diagrammatic representation of an area of land or sea which also shows physical features, roads, cities etc..
A 3-D model can be prepared for geographical map.
<u>Option 3:</u> I believe that aliens exist
This is a hypothetical statement. It is a smart guess by the means of set of assumptions and observations. For its validation, we need to conduct some experiments.
Hence, the correct answer is geographical map.
hey there!:
H2S(aq) <=> H⁺(aq) + HS⁻(aq)
K'c = [H⁺][HS⁻]/[H₂S] = 9.5*10⁻⁸
HS⁻(aq) <=> H⁺(aq) + S²⁻(aq)
K"c = [H⁺][S²⁻]/[HS⁻] = 1.0*10⁻¹⁹
H₂S(aq) <=> 2 H⁺(aq) + S²⁻(aq)
Kc = [H⁺]²[S²⁻] / [H₂S]
= [H+][HS⁻] / [H₂S] * [H⁺][S²⁻]/[HS⁻]
= K'c *K"c
= ( 9.5*10⁻⁸ ) * ( 1.0 x 10⁻¹⁹ )
= 9.5*10⁻²⁷
Hope this helps!
Answer:
c MgO
Explanation:
product is located after the reaction arrow